Novel directions in the ALP EFT

Maria Ramos

we

SN

Red

Motivation

GUT? Extra dimensions? Composite theory?

Motivation

Relate IR with UV physics.

Gavela, Quílez, MR, 2305.15465

Revisiting the axion solution to the strong CP problem:

I. Can scalar mixing impact our predictions?

Assuming the SM gauge group setting

The QCD axion: minimal way

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \left(\frac{\hat{a}_{G\tilde{G}}}{f_a} - \bar{\theta} \right) G\tilde{G} \rightarrow \qquad m_a^2 f_a^2 = \chi_{\text{QCD}} \simeq m_\pi^2 f_\pi^2 \frac{m_u m_d}{\left(m_u + m_d\right)^2}$$

The QCD axion: non-minimal way

$$m_a^2 f_a^2 = \chi_{\rm QCD}$$
 [interaction basis = mass basis]

But the axion may not be the only singlet scalar in Nature.

 Motivation from fundamental setups: e.g. string axiverse, extra dimensions

Dienes, Dudas, Gherghetta 99 Arvanitakia, Dimopoulos, Dubovskyc, Kalopere, Russell 09

 Axion-ALP mixing opens new regions of parameter space for dark matter Cyncynates, Giurgica-Tiron, Simon, Thompson 21, ...

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \left(\frac{\hat{a}_{G\widetilde{G}}}{F} - \bar{\theta} \right) G\widetilde{G} - V'(\hat{a}_{G\widetilde{G}}, \dots, \hat{a}_N)$$
$$\Rightarrow m_i^2 f_i^2 = g_i \chi_{\text{QCD}}$$

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \left(\sum_{k=1}^N \frac{\hat{a}_k}{\hat{f}_k} - \bar{\theta} \right) G\widetilde{G} - V_B(\hat{a}_1, \hat{a}_2, \dots, \hat{a}_N) \to \frac{\alpha_s}{8\pi} \left(\frac{\hat{a}_{G\widetilde{G}}}{F} - \bar{\theta} \right) G\widetilde{G} - V_B^{\mathrm{R}}(\hat{a}_{G\widetilde{G}}, \dots)$$

$$\frac{1}{F^2} = \sum_{k=1}^N \frac{1}{\hat{f}_k^2}$$

A preferred basis.

$$\mathbf{M}^2 \equiv \mathbf{R} \, \hat{\mathbf{M}}^2 \mathbf{R}^T$$

$$\mathbf{M}^2 = \mathbf{M}_A^2 + \mathbf{M}_B^2 = \begin{pmatrix} b_{11} & \mathbf{X}^{\dagger} \\ \mathbf{X} & \mathbf{M}_1^2 \end{pmatrix} = \frac{\chi_{\text{QCD}}}{F^2} \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{0} \end{pmatrix} + \begin{pmatrix} b_{11} - \frac{\chi_{\text{QCD}}}{F^2} & \mathbf{X}^{\dagger} \\ \mathbf{X} & \mathbf{M}_1^2 \end{pmatrix},$$

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \left(\sum_{k=1}^N \frac{\hat{a}_k}{\hat{f}_k} - \bar{\theta} \right) G\widetilde{G} - V_B(\hat{a}_1, \hat{a}_2, \dots, \hat{a}_N) \to \frac{\alpha_s}{8\pi} \left(\frac{\hat{a}_{G\widetilde{G}}}{F} - \bar{\theta} \right) G\widetilde{G} - V_B^{\mathrm{R}}(\hat{a}_{G\widetilde{G}}, \dots)$$

$$\frac{1}{F^2} = \sum_{k=1}^N \frac{1}{\hat{f}_k^2}$$

A preferred basis.

$$\mathbf{M}^2 \equiv \mathbf{R} \, \hat{\mathbf{M}}^2 \mathbf{R}^T$$

$$\mathbf{M}^2 = \mathbf{M}_A^2 + \mathbf{M}_B^2 = \begin{pmatrix} b_{11} & \mathbf{X}^{\dagger} \\ \mathbf{X} & \mathbf{M}_1^2 \end{pmatrix} = \frac{\chi_{\text{QCD}}}{F^2} \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{0} \end{pmatrix} + \begin{pmatrix} b_{11} - \frac{\chi_{\text{QCD}}}{F^2} & \mathbf{X}^{\dagger} \\ \mathbf{X} & \mathbf{M}_1^2 \end{pmatrix},$$

$$\exists U(1)_{PQ} \implies \lim_{\chi_{\rm QCD} \to 0} \det \mathbf{M}^2 = 0 \implies \det \mathbf{M}^2_B = 0 \quad \left\langle \hat{a}_0 | a_{G\tilde{G}} \right\rangle \neq 0$$

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \left(\sum_{k=1}^N \frac{\hat{a}_k}{\hat{f}_k} - \bar{\theta} \right) G\widetilde{G} - V_B(\hat{a}_1, \hat{a}_2, \dots, \hat{a}_N) \to \frac{\alpha_s}{8\pi} \left(\frac{\hat{a}_{G\widetilde{G}}}{F} - \bar{\theta} \right) G\widetilde{G} - V_B^R(\hat{a}_{G\widetilde{G}}, \dots)$$

$$\frac{1}{F^2} = \sum_{k=1}^N \frac{1}{\hat{f}_k^2}$$

A preferred basis.

$$\mathbf{M}^2 \equiv \mathbf{R} \, \hat{\mathbf{M}}^2 \mathbf{R}^T$$

$$\mathbf{M}^2 = \mathbf{M}_A^2 + \mathbf{M}_B^2 = \begin{pmatrix} b_{11} & \mathbf{X}^{\dagger} \\ \mathbf{X} & \mathbf{M}_1^2 \end{pmatrix} = \frac{\chi_{\text{QCD}}}{F^2} \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{0} \end{pmatrix} + \begin{pmatrix} b_{11} - \frac{\chi_{\text{QCD}}}{F^2} & \mathbf{X}^{\dagger} \\ \mathbf{X} & \mathbf{M}_1^2 \end{pmatrix},$$

$$\exists U(1)_{PQ} \implies \lim_{\chi_{\rm QCD} \to 0} \det \mathbf{M}^2 = 0 \implies \det \mathbf{M}^2_B = 0 \quad \left\langle \hat{a}_0 | a_{G\tilde{G}} \right\rangle \neq 0$$

Applying Schur's formula.

$$\det \mathbf{M}_{1}^{2} \left(b_{11} - \frac{\chi_{\text{QCD}}}{F^{2}} - \mathbf{X}^{\dagger} \mathbf{M}_{1}^{-2} \mathbf{X} \right) = 0$$
$$\Rightarrow \frac{\det \mathbf{M}^{2}}{\det \mathbf{M}_{1}^{2}} = \left(b_{11} - \mathbf{X}^{\dagger} \mathbf{M}_{1}^{-2} \mathbf{X} \right) = \frac{\chi_{\text{QCD}}}{F^{2}}$$

$$\Rightarrow \frac{\det \mathbf{M}^2}{\det \mathbf{M}_1^2} = \left(b_{11} - \mathbf{X}^{\dagger} \mathbf{M}_1^{-2} \mathbf{X}\right) = \frac{\chi_{\text{QCD}}}{F^2}$$

Moving to the physical basis.

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \frac{a_i}{f_i} G \widetilde{G} \qquad \text{with} \qquad \frac{1}{f_i} = \frac{\left\langle \hat{a}_{G\widetilde{G}} | a_i \right\rangle}{F} \equiv \frac{v_{i1}}{F} \implies \sum_{i=1}^N \frac{1}{f_i^2} = \frac{1}{F^2}$$

$$\Rightarrow \frac{\det \mathbf{M}^2}{\det \mathbf{M}_1^2} = \left(b_{11} - \mathbf{X}^{\dagger} \mathbf{M}_1^{-2} \mathbf{X}\right) = \frac{\chi_{\text{QCD}}}{F^2}$$

Moving to the physical basis.

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \frac{a_i}{f_i} G \widetilde{G} \qquad \text{with} \qquad \frac{1}{f_i} = \frac{\left\langle \hat{a}_{G\widetilde{G}} | a_i \right\rangle}{F} \equiv \underbrace{\frac{v_{i1}}{F}}_{F} \implies \sum_{i=1}^{N} \frac{1}{f_i^2} = \frac{1}{F^2}$$

Eigenvector-eigenvalue Th. (generic A matrix)

$$\frac{\det\left(\lambda \mathbb{I}_{N-1} - M_j\right)}{\det\left(\lambda \mathbb{I}_N - A\right)} = \sum_{i=1}^N \frac{|v_{ij}|^2}{\lambda(A) - \lambda_i(A)}$$

$$\Rightarrow \frac{\det \mathbf{M}^2}{\det \mathbf{M}_1^2} = \left(b_{11} - \mathbf{X}^{\dagger} \mathbf{M}_1^{-2} \mathbf{X}\right) = \frac{\chi_{\text{QCD}}}{F^2}$$

Moving to the physical basis.

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \frac{a_i}{f_i} G \widetilde{G} \qquad \text{with} \qquad \frac{1}{f_i} = \frac{\left\langle \hat{a}_{G\widetilde{G}} | a_i \right\rangle}{F} \equiv \frac{v_{i1}}{F} \implies \sum_{i=1}^N \frac{1}{f_i^2} = \frac{1}{F^2}$$

Eigenvector-eigenvalue Th. (generic A matrix)

$$\frac{\det\left(\lambda \mathbb{I}_{N-1} - M_j\right)}{\det\left(\lambda \mathbb{I}_N - A\right)} = \sum_{i=1}^N \frac{|v_{ij}|^2}{\lambda(A) - \lambda_i(A)}$$

$$\frac{\det \mathbf{M}_{1}^{2}}{\det \mathbf{M}^{2}} = \sum_{i=1}^{N} \frac{|v_{1i}|^{2}}{m_{i}^{2}} = \frac{F^{2}}{\chi_{\text{QCD}}} \sum_{i=1}^{N} \frac{1}{g_{i}}$$
$$\boxed{g_{i} = \frac{m_{i}^{2} f_{i}^{2}}{\chi_{\text{QCD}}}}$$

The QCD axion sum rule

$$\Rightarrow \frac{\det \mathbf{M}^2}{\det \mathbf{M}_1^2} = \left(b_{11} - \mathbf{X}^{\dagger} \mathbf{M}_1^{-2} \mathbf{X}\right) = \frac{\chi_{\text{QCD}}}{F^2}$$

Moving to the physical basis.

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \frac{a_i}{f_i} G \widetilde{G} \qquad \text{with} \qquad \frac{1}{f_i} = \frac{\left\langle \hat{a}_{G\widetilde{G}} | a_i \right\rangle}{F} \equiv \frac{v_{i1}}{F} \implies \sum_{i=1}^N \frac{1}{f_i^2} = \frac{1}{F^2}$$

Eigenvector-eigenvalue Th. d (generic A matrix)

$$\frac{\det\left(\lambda \mathbb{I}_{N-1} - M_j\right)}{\det\left(\lambda \mathbb{I}_N - A\right)} = \sum_{i=1}^N \frac{|v_{ij}|^2}{\lambda(A) - \lambda_i(A)}$$

- -

7 T

$$\frac{\det \mathbf{M}_{1}^{2}}{\det \mathbf{M}^{2}} = \sum_{i=1}^{N} \frac{|v_{1i}|^{2}}{m_{i}^{2}} = \frac{F^{2}}{\chi_{\text{QCD}}} \sum_{i=1}^{N} \frac{1}{g_{i}} \xrightarrow{\exists U(1)_{\text{PQ}}}{= 1, \beta_{i} \equiv 1, \beta_{i} \equiv \frac{1}{g_{i}}}$$

$$g_{i} = \frac{m_{i}^{2} f_{i}^{2}}{\chi_{\text{QCD}}}$$

$$axionness \text{ is shared!}$$

The QCD axion sum rule

$$\beta_{i} = \frac{\langle \hat{a}_{\mathrm{PQ}} \mid a_{i} \rangle \langle a_{i} \mid \hat{a}_{G\widetilde{G}} \rangle}{\langle \hat{a}_{\mathrm{PQ}} \mid \hat{a}_{G\widetilde{G}} \rangle}$$

Toy example:

$$\mathcal{L}_{N=2} = \frac{\alpha_s}{8\pi} \left(\frac{\hat{a}_1}{\hat{f}_1} + \frac{\hat{a}_2}{\hat{f}_2} + \bar{\theta} \right) G\tilde{G} - \mu^2 \hat{a}_2^2 \implies \hat{a}_{GG} = \frac{1}{2} \left(\hat{a}_1 + \hat{a}_2 \right) \text{ and } \hat{a}_{PQ} = \hat{a}_1$$

Large deviations require new scales close to the QCD generated mass

Maria Ramos (IFT, Madrid)

Maria Ramos (IFT, Madrid)

Maria Ramos (IFT, Madrid)

Maria Ramos (IFT, Madrid)

Maria Ramos (IFT, Madrid)

Maximally deviated QCD axions=Maxions

Maria Ramos (IFT, Madrid)

Maximally deviated QCD axions=Maxions

$$\max\left\{\min_{i}\{g_i\}\right\} = N \quad \Longrightarrow \quad g_i = N, \ \forall i$$

m-parameter family of maxions: m = N(N+1)/2

Maria Ramos (IFT, Madrid)

Assuming universal anomaly factors,

$$\mathcal{L} \supset \frac{\alpha_{em}}{8\pi} \sum_{k=1}^{N} \frac{E_k}{\mathcal{N}_k} \frac{\hat{a}_k}{\hat{f}_k} F \widetilde{F} \implies \frac{\alpha_{em}}{8\pi} \frac{E}{\mathcal{N}} \frac{a_{G\tilde{G}}}{F} F \widetilde{F}$$

Making an axion-dependent rotation, $q = \begin{pmatrix} u \\ d \end{pmatrix} \rightarrow e^{i\gamma_5 a_{G\tilde{G}}/(2F)Q_a} \begin{pmatrix} u \\ d \end{pmatrix}$: Di Cortona, Hardy, Vega, Villadoro 15

$$\mathcal{L} \supset \frac{\alpha_{em}}{2\pi} \left[\frac{E}{\mathcal{N}} - 1.92 \right] \sum_{i} \frac{a_i}{f_i} F \widetilde{F}$$

$$\left| \frac{m_i^2}{g_{a_i\gamma\gamma}^2} = \frac{m_a^2}{g_{a\gamma\gamma}^2} \right|_{\text{single QCD axion}} \times g_i$$

$$\frac{(2\pi)^2}{\alpha_{em}^2} \left[\frac{E}{N} - 1.92 \right]^{-2} \sum_{i=1}^{N} \frac{g_{a_i\gamma\gamma}^2}{m_i^2} = 1$$

Chala, Guedes, Santiago, MR, 2012.09017 Machado, Das Bakshi, MR, 2306.08036

Revisiting the axion/ALP EFT: II. Can operator mixing impact our predictions?

The minimal basis

$$L_{4} = L_{\rm SM} + \frac{1}{2} (\partial_{\mu} s) (\partial^{\mu} s) - \frac{1}{2} m_{s}^{2} s^{2} - \frac{\kappa_{s}}{3!} s^{3} - \frac{\lambda_{s}}{4!} s^{4} - \kappa_{s\phi} s \phi^{\dagger} \phi - \frac{\lambda_{s\phi}}{2} s^{2} \phi^{\dagger} \phi$$

To quantify the stability of UV scenarios:

$$16 \ \pi^2 \mu \frac{\mathrm{d}a_i}{\mathrm{d}\mu} = \gamma_{ij}^{(1)} a_j , \qquad 16\pi^2 \mu \frac{\mathrm{d}\kappa_i}{\mathrm{d}\mu} = \gamma_{ij}^{(2)} \kappa_j + \gamma_{ij}^{(3)} m^2 a_j$$

$$\begin{aligned} \mathbf{Comparison with axion basis} \\ L_{\mathrm{ALP}} &= \frac{1}{2} (\partial_{\mu} s)^{2} + \sum_{\psi} \frac{\partial_{\mu} s}{f_{s}} \overline{\psi} c_{\psi} \gamma^{\mu} \psi + \sum_{X} c_{X} \frac{g_{X}^{2}}{16\pi^{2}} \frac{s}{f_{s}} F_{\mu\nu} \widetilde{F}^{\mu\nu} \\ \mathbf{periodicity:} \quad \boxed{c_{X} \in \mathbb{Z}} \\ F_{\mathrm{Faser, Reece 22}} \\ L_{5} \supset s \left[i \overline{q_{L}} a_{su\phi} \widetilde{\phi} u_{R} + i \overline{q_{L}} a_{sd\phi} \phi d_{R} + i \overline{l_{L}} a_{se\phi} \phi e_{R} + \mathrm{h.c.} \right] \end{aligned}$$

Shift symmetry (perturbative level)

$$a_{su\phi} = \frac{i}{f_s} (y^u c_u - c_q y^u) , \quad a_{sd\phi} = \frac{i}{f_s} (y^d c_d - c_q y^d) , \quad a_{se\phi} = \frac{i}{f_s} (y^e c_e - c_l y^e)$$

See also Bonilla, Brivio, Gavela, Sanz 21 and Bauer, Neubert, Renner, Schnubel, Thamm 21

Shift-symmetry invariants \rightarrow Jonathan's talk

$$I_e^{(1)} = \operatorname{Re}\operatorname{Tr}\left(a_{se\phi}y_e^{\dagger}\right), \quad I_e^{(2)} = \operatorname{Re}\operatorname{Tr}\left(x_e a_{se\phi}y_e^{\dagger}\right), \quad I_e^{(3)} = \operatorname{Re}\operatorname{Tr}\left(x_e^2 a_{se\phi}y_e^{\dagger}\right)$$

Bonnefoy, Grojean, Kley 22

	s^5	$s^3 \phi^\dagger \phi$	$s(\phi^\dagger\phi)^2$	$s\overline{\Psi_L}\phi\psi_R$	sXX	$sX\widetilde{X}$
s^5	λ_s	$\lambda_{s\phi}$	0	0	0	0
$s^3 \phi^\dagger \phi$	$\lambda_{s\phi}$	$\lambda_s + \lambda_{s\phi} + \lambda + y_t^2$	$\lambda_{s\phi}$	$\lambda_{s\phi} y_t$	$\lambda_{s\phi}g_2^2$	0
$s(\phi^{\dagger}\phi)^2$	0	$\lambda_{s\phi}$	$\lambda_{s\phi} + \lambda + y_t^2$	$y_t^3 + \lambda y_t$	λg_2^2	0
$s\overline{\Psi_L}\phi\psi_R$	0	0	0	$\lambda_{s\phi} + y_t^2$	$g_3^2 y_t$	$g_3^2 y_t$
sXX	0	0	0	0	g_3^2	0
$sX\widetilde{X}$	0	0	0	0	0	g_3^2
	trivia	zeros				

	s^5	$s^3 \phi^\dagger \phi$	$s(\phi^\dagger\phi)^2$	$s\overline{\Psi_L}\phi\psi_R$	sXX	$sX\widetilde{X}$
s^5	λ_s	$\lambda_{s\phi}$	0	0	0	0
$s^3 \phi^\dagger \phi$	$\lambda_{s\phi}$	$\lambda_s + \lambda_{s\phi} + \lambda + y_t^2$	$\lambda_{s\phi}$	$\lambda_{s\phi}y_t$	$\lambda_{s\phi}g_2^2$	0
$s(\phi^{\dagger}\phi)^2$	0	$\lambda_{s\phi}$	$\lambda_{s\phi} + \lambda + y_t^2$	$y_t^3 + \lambda y_t$	λg_2^2	0
$s\overline{\Psi_L}\phi\psi_R$	0	0	0	$\lambda_{s\phi} + y_t^2$	$g_3^2 y_t$	$g_3^2 y_t$
sXX	0	0	0	0	g_3^2	0
$sX\widetilde{X}$	0	0	0	0	0	g_3^2 \checkmark
			(not re	Only equired by qu	due to Jantizatio	WFR n argumer

	s^5	$s^3 \phi^\dagger \phi$	$s(\phi^\dagger\phi)^2$	$s\overline{\Psi_L}\phi\psi_R$	sXX	$sX\widetilde{X}$
s^5	λ_s	$\lambda_{s\phi}$	0	0	0	0
$s^3 \phi^\dagger \phi$	$\lambda_{s\phi}$	$\lambda_s + \lambda_{s\phi} + \lambda + y_t^2$	$\lambda_{s\phi}$	$\lambda_{s\phi}y_t$	$\lambda_{s\phi}g_2^2$	0
$s(\phi^{\dagger}\phi)^2$	0	$\lambda_{s\phi}$	$\lambda_{s\phi} + \lambda + y_t^2$	$y_t^3 + \lambda y_t$	λg_2^2	0
$s\overline{\Psi_L}\phi\psi_R$	0	0	0	$\lambda_{s\phi} + y_t^2$	$g_3^2 y_t$	$g_3^2 y_t$
sXX	0	0	0	0	g_3^2	0
$sX\widetilde{X}$	0	0	0	0	0	g_3^2

Large deviations from NDA

	s^5	$s^3(\phi^\dagger\phi)$	$s(\phi^{\dagger}\phi)^2$	$s\overline{\Psi_L}\phi\psi_R$	sXX	$sX\widetilde{X}$
s^3	m_s^2	μ^2	0	0	0	0
$s(\phi^{\dagger}\phi)$	0	m_s^2	μ^2	$y_t \mu^2$	$g_2^2\mu^2$	0
s^4	κ_s	$\kappa_{s\phi}$	0	0	0	0
$s^2(\phi^{\dagger}\phi)$	0	$\kappa_s + \kappa_{s\phi}$	$\kappa_{s\phi}$	$y_t\kappa_{s\phi}$	$g_2^2 \kappa_{s\phi}$	0
$(\phi^\dagger \phi)^2$	0	0	$\kappa_{s\phi}$	0	0	0

CP-odd effect: mixing between different mass dimensions

Matching at the EW scale

$$\begin{pmatrix} s \\ h \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \hat{s} \\ \hat{h} \end{pmatrix}$$

$$\tan 2\theta = \frac{-2a_sv^3 + 40a_{s^5}v_s^4/v - \frac{4}{3}v_s/v\left(6m_s^2 + 3\kappa_sv_s + \lambda_sv_s^2\right)}{\left(4a_s - 6a_{s^3}\right)v^2v_s - 40a_{s^5}v_s^3 + 2m_s^2 + \left(-4\lambda + \lambda_{s\phi}\right)v^2 + v_s\left(2\kappa_s + \lambda_sv_s\right)}$$

 $v_s=0\implies \mu^2=\lambda v^2
ot \Rightarrow heta=0$ @ non-renormalizable level

$$\hat{\lambda}_{s^{2}h^{2}}v - \hat{\kappa}_{s^{2}h} = \theta \left[\hat{\kappa}_{s} + 4v^{2} \left(6\hat{a}_{s^{3}h^{2}} - 7\hat{a}_{sh^{4}} \right) \right]$$

$$\frac{1}{\hat{\lambda}} = \hat{\kappa}_{s} - \frac{3\hat{m}_{h}^{2}}{\hat{m}_{h}^{2}} + 240\hat{\kappa}_{s} - 240\hat{\kappa}_{s}^{2} + 240\hat{\kappa}_{s}^$$

$$\frac{1}{2}\hat{\lambda}_{h}v - \hat{\kappa}_{h} = -\frac{3}{2}\frac{m_{\bar{h}}}{v} + 24\theta\hat{a}_{sh^{4}}v^{2}$$

$$\begin{split} \textbf{The low-energy EFT} &= \frac{1}{2} (\partial_{\mu} s) (\partial^{\mu} s) - \frac{1}{2} \tilde{m}_{s}^{2} s^{2} - \frac{\tilde{\kappa}_{s}}{3!} s^{3} - \frac{\tilde{\lambda}_{s}}{4!} s^{4} - \frac{1}{4} G_{\mu\nu}^{A} G^{A\mu\nu} - \frac{1}{4} A_{\mu\nu} A^{\mu\nu} + \tilde{\theta}_{\text{QCD}} G_{\mu\nu}^{A} \tilde{G}^{A\mu\nu} \\ &+ \sum_{\psi=u,d,e} \left[\overline{\psi} i D\psi - \overline{\psi}_{L} \tilde{m}_{\psi} \psi_{R} + i s \overline{\psi}_{L} \tilde{c}_{\psi} \psi_{R} + s^{2} \overline{\psi}_{L} \tilde{a}_{\psi} \psi_{R} + \text{h.c.} \right] + \tilde{a}_{s^{5}} s^{5} \\ &+ \tilde{a}_{sA} s A_{\mu\nu} A^{\mu\nu} + \tilde{a}_{sG} s G_{\mu\nu}^{A} G^{A\mu\nu} + \tilde{a}_{s\tilde{A}} s A_{\mu\nu} \tilde{A}^{\mu\nu} + \tilde{a}_{s\tilde{G}} s G_{\mu\nu}^{A} \tilde{G}^{A\mu\nu} \\ &+ \sum_{\psi=u,d,e} \left[\overline{\psi}_{L} \tilde{a}_{\psi A} \sigma^{\mu\nu} \psi_{R} A_{\mu\nu} + \overline{\psi}_{L} \tilde{a}_{\psi G} \sigma^{\mu\nu} T_{A} \psi_{R} G_{\mu\nu}^{A} + \text{h.c.} \right] \\ &- \tilde{a}_{\psi} \sim \lambda_{s\phi} \frac{y^{\psi}}{v} \sim \lambda_{s\phi} \frac{m_{\psi}}{v^{2}} \\ \text{e.g. } \tilde{c}_{\psi} = \frac{1}{\sqrt{2}} V_{\psi_{L}}^{\dagger} \left[i \theta y_{\psi} + a_{s\psi\phi} (v + \theta v_{s}) \right] V_{\psi_{R}} \\ &- 2g_{3} \text{Tr} \left[\tilde{a}_{dG} \tilde{c}_{e}^{\dagger} + 3 \tilde{c}_{d} \tilde{c}_{d}^{\dagger} + 3 \tilde{c}_{u} \tilde{c}_{u}^{\dagger} \right] \tilde{a}_{s\tilde{G}} \\ &- 2g_{3} \text{Tr} \left[\tilde{a}_{dG} \tilde{c}_{d}^{\dagger} + \tilde{a}_{uG} \tilde{c}_{u}^{\dagger} + \text{h.c.} \right] \\ \beta_{\tilde{c}_{e}} = -6 \tilde{e}^{2} \tilde{c}_{e} - 24 \tilde{e}^{2} \tilde{m}_{e} \tilde{a}_{s\tilde{A}} + 24 i \tilde{e}^{2} \tilde{m}_{e} \tilde{a}_{sA} + 2 \text{Tr} \left[\tilde{c}_{e} \tilde{c}_{e}^{\dagger} + 3 \left(\tilde{c}_{u} \tilde{c}_{u}^{\dagger} + \tilde{c}_{d} \tilde{c}_{d}^{\dagger} \right) \right] \tilde{c}_{e} \\ &+ 3 \tilde{c}_{e} \tilde{c}_{e}^{\dagger} \tilde{c} + 2 \text{Tr} \left[\tilde{m}_{e} \tilde{c}_{e}^{\dagger} \tilde{a}_{e} - 2 \tilde{a}_{e} \tilde{m}_{e}^{\dagger} \tilde{c}_{e} + \tilde{a}_{e} \tilde{c}_{e}^{\dagger} \tilde{m}_{e} - 2 \tilde{c}_{e} \tilde{m}_{e}^{\dagger} \tilde{a}_{e} \right) \end{array}$$

Phenomenological implications

Impact of scalar mixing: $\kappa_{s\phi} \sim 0.1 \rightarrow \theta \sim \mathcal{O}(10^{-4})$

Maria Ramos (IFT, Madrid)

Phenomenological implications

Assuming only Re couplings in the UV

ALPRUNNER 2023

Phenomenological implications $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2}\partial_{\mu}s\partial^{\mu}s + \frac{1}{2}\tilde{m}^{2}s^{2} + \frac{a_{s\widetilde{Z}}}{c_{\omega}^{2} - s_{\omega}^{2}}s\left(c_{\omega}^{2}W_{\mu\nu}\widetilde{W}^{\mu\nu} - s_{\omega}^{2}B_{\mu\nu}\widetilde{B}^{\mu\nu}\right)$

Direct constraints from mono-*Z*:

 $a_{s\tilde{Z}} < 0.2 \ (0.04) \ \mathrm{TeV}^{-1}$

Brivio, Gavela, Merlo, Mimasu, No, Rey, Sanz 17

Conclusions

I. Scalar mixing effects: The PQ mechanism leads in all generality to multiple axion signals, which are linked by an exact sum rule. The maximum deviation of N axions is \sqrt{N} . The main experimental impact is from scales not far from the QCD contribution.

II. Operator mixing effects: The full RGE effects should be taken into account to correctly interpret low-energy bounds in terms of Wilson coefficients generated in the UV. Shift-breaking interactions typically source sizable mixings and open novel signatures for ALPs. For example, new CP-odd phases can be produced, which are absent in more shift-symmetric scenarios.

Laguerre maxions

Eigenvalues dispersion

All families of maxions (with same scale) for N=2:

$$\mathbf{M}_{N=2}^{2} = \frac{\chi_{\text{QCD}}}{\hat{f}^{2}} \begin{pmatrix} 2-p & 1+\sqrt{p(2-p)} \\ 1+\sqrt{p(2-p)} & 1+p \end{pmatrix}$$

Limiting case: Massless state has no mixing with gluons, the heavy one with mass $\sim 4rac{\chi_{
m QCD}}{\hat{f}^2}$

After QCD confinement,

$$V_{\text{eff}} = \frac{1}{2} \chi_{\text{QCD}} \left(\frac{\hat{a}_1 + \hat{a}_2}{\hat{f}} - \bar{\theta} \right)^2 + \frac{\lambda}{4} \hat{f}^4 \left(\frac{3\hat{a}_1 + \hat{a}_2}{\hat{f}} \right)^2$$

$$r = \lambda \frac{\hat{f}^4}{2\chi_{\text{QCD}}}$$
 $\mathbf{M}^2 = \frac{\chi_{\text{QCD}}}{\hat{f}^2} \begin{pmatrix} 2+8r & -4r \\ -4r & 2r \end{pmatrix}$, with $1/F^2 = 2/\hat{f}^2$

which contains maxion solutions (r = 1/5).

backup

Clockwork scenario

Farina, Pappadopulo, Rompineve, Tesi 17

$$\hat{\mathbf{M}}^{2} = \frac{\chi_{\text{QCD}}}{\hat{f}^{2}} \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} + r \frac{\chi_{\text{QCD}}}{\hat{f}^{2}} \begin{pmatrix} 1 & -q & 0\\ -q & 1+q^{2} & -q\\ 0 & -q & q^{2} \end{pmatrix}$$

Correspondingly, $v_{j0} \propto rac{1}{q^j}$

leads to decay constant exponentially enhanced

PQ:

 $\frac{\det \mathbf{M}^2}{\det \mathbf{M}_1^2} = \frac{\chi_{\text{QCD}}}{F^2}$

Maxions:

$$\begin{cases} \operatorname{tr} \mathbf{M}^2 = N \, \frac{\chi_{\text{QCD}}}{F^2} \Leftrightarrow r = \frac{1}{10} \\ \operatorname{tr}^2 \mathbf{M}^2 - \operatorname{tr} \mathbf{M}^2 \cdot \mathbf{M}^2 = N \, \frac{\chi_{\text{QCD}}}{F^2} \operatorname{tr} \mathbf{M}_1^2 \Leftrightarrow r = 0 \lor r = \frac{11}{182} \end{cases}$$

Potential scales

In the basis where the extra potential is diagonal, $\mathbf{M}_B^2 = \mathrm{diag}(ilde{\lambda}_1,\ldots, ilde{\lambda}_N)$

packup

$$g_{i} = \frac{m_{i}^{2} F^{2}}{\left|\langle a_{G\tilde{G}} | a_{i} \rangle\right|^{2} \chi_{\text{QCD}}} = \frac{m_{i}^{2}}{\left|\langle a_{\text{PQ}} | a_{i} \rangle/f_{\text{PQ}} + \sum_{j}^{N-1} \langle \tilde{a}_{j} | a_{i} \rangle/\tilde{f}_{j}\right|^{2} \chi_{\text{QCD}}}$$

For $\tilde{\lambda}_j \gg \chi_{\text{QCD}}/F^2$: $\left| \frac{1}{g_j} \sim \frac{\left| \langle a_{G\tilde{G}} | \tilde{a}_j \rangle \right|^2 \chi_{\text{QCD}}}{\tilde{\lambda}_j F^2} = \frac{(F/\tilde{f}_j)^2 \chi_{\text{QCD}}}{\tilde{\lambda}_j F^2} \leq \frac{\chi_{\text{QCD}}}{\tilde{\lambda}_j F^2} \longrightarrow 0 \right|$ For $\tilde{\lambda}_j \ll \chi_{\text{QCD}}/F^2$: $\left| a_{\varepsilon} = \frac{a_{\text{PQ}}}{\tilde{\lambda}_j} - \frac{\tilde{a}_j}{\tilde{\lambda}_j} + \mathcal{O}(\varepsilon), \quad m_{\varepsilon}^2 \sim \tilde{\lambda}_j = \varepsilon \chi_{\text{QCD}}/F^2 \right|$

$$a_{\varepsilon} = \frac{1}{f_{\rm PQ}} - \frac{1}{\tilde{f}_j} + O(\varepsilon), \quad m_{\epsilon} \sim \lambda_j = \varepsilon \,\chi_{\rm QCD}/F - \frac{1}{g_j} \sim \frac{\left|\langle a_{G\tilde{G}} | \tilde{a}_{\varepsilon} \rangle\right|^2 \chi_{\rm QCD}}{\tilde{\lambda}_j F^2} \sim \frac{\varepsilon^2}{\varepsilon} \longrightarrow 0$$

Whenever one scale is very different from the QCD induced mass, one state decouples.

ACKUI Mixing effects in DM abundance

$$\mathcal{L} \supset \frac{1}{2} (\partial \phi_a)^2 + \frac{1}{2} (\partial \phi_S)^2$$
$$- m_a^2(T) f_a^2 \left[1 - \cos\left(\frac{\phi_a}{f_a} + \frac{\phi_S}{f_S}\right) \right]$$
$$- m_S^2 f_S^2 \left[1 - \cos\left(\frac{\phi_S}{f_S}\right) \right]$$

$$m_a^2(T) = m_{a,0}^2 \max\left\{1, \left(\frac{T}{T_{\text{QCD}}}\right)^{-n}\right\}$$

$$V \approx \left(\phi_a \ \phi_S \right) \left(\begin{array}{cc} m_a^2 & \frac{f_a}{f_S} m_a^2 \\ \frac{f_a}{f_S} m_a^2 & m_S^2 + \frac{f_a^2}{f_S^2} m_a^2 \end{array} \right) \left(\begin{array}{c} \phi_a \\ \phi_S \end{array} \right)$$

Would typically dominate the late-time energy density

Assume
$$f_s \gg f_a$$
:
At early times,
 $m_a(T) \ll m_S \rightarrow \phi_H \sim \phi_S$, $\phi_L \sim \phi_a$
At late times,
 $m_a(T) \gg m_S \rightarrow \phi_H \sim \phi_a$, $\phi_L \sim \phi_S$
so energy is transferred into
the QCD axion...

Cyncynates, Thompson 23 [other examples from Takahashi et al]

i,

backup Mixing effects in DM abundance

Would typically dominate the late-time energy density

[other examples from Takahashi et al]

oackup Off-shell renormalization

Compute one-loop divergent amplitudes generated by 1P1 diagrams

Feynrules + FeynArts + FormCalc + Matchmakereft

- Match to the Green's basis
- Project onto the minimal basis, using field redefinitions

Scalar	Yukawa	Gauge	Derivative
$\mathcal{O}_{s^5} = s^5$	$\mathcal{O}_{su\phi} = is\overline{q_L}\tilde{\phi}u_R$	$\mathcal{O}_{s\widetilde{B}} = sB_{\mu\nu}\widetilde{B}^{\mu\nu}$	$\mathcal{R}_{s\phi\square} = is\phi^{\dagger}D^2\phi$
$\mathcal{O}_{s^3} = s^3(\phi^{\dagger}\phi)$	$\mathcal{O}_{sd\phi} = is\overline{q_L}\phi d_R$	$\mathcal{O}_{s\widetilde{W}} = sW_{\mu\nu}\widetilde{W}^{\mu\nu}$	$\mathcal{R}_{s\square} = s^2 \partial^2 s$
$\mathcal{O}_s = s(\phi^{\dagger}\phi)^2$	$\mathcal{O}_{se\phi} = is\overline{l_L}\phi e_R$	$\mathcal{O}_{s\widetilde{G}}=sG_{\mu\nu}\widetilde{G}^{\mu\nu}$	$\mathcal{R}_{\phi s\square} = \phi^{\dagger} \phi \partial^2 s$
		$\mathcal{O}_{sB} = sB_{\mu\nu}B^{\mu\nu}$	$\mathcal{R}_{sq} = i s \overline{q_L} D \hspace{05cm}/ q_L$
		$\mathcal{O}_{sW} = sW_{\mu\nu}W^{\mu\nu}$	$\mathcal{R}_{sl} = is \overline{l_L} D l_L$
		$\mathcal{O}_{sG} = sG_{\mu\nu}G^{\mu\nu}$	$\mathcal{R}_{su} = is\overline{u_R} \not\!\!\!D u_R$
			$\mathcal{R}_{sd} = is\overline{d_R} \not\!\!\!D d_R$
			$\mathcal{R}_{se} = is\overline{e_R} \not\!\!\!D e_R$