Astrophysical searches for the string axiverse

Francesca Chadha-Day

IPPP, Durham University

Axions $++$ LAPTh September 2023

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

Outline

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

- **1** [The String Axiverse](#page-3-0)
- 2 [ALP Oscillations](#page-6-0)
- 3 [CAST](#page-14-0)
- 4 [SN1987A](#page-18-0)
- **5** [Many ALP fields](#page-21-0)

6 [Discussion](#page-26-0)

2107.12813, FCD 23xx.xxxxx, FCD, James Maxwell and Jessica Turner

Collaborators

Jessica Turner

James Maxwell

イロト イ御 トメミト メミト ニミー のんぺ

Image by James Maxwell

Bounds on the ALP-photon interaction

Axiverse signatures

KORKAR KERKER EL POLO

- The string axiverse may lead to a complex, multi-component dark sector.
- Avoiding overproduction of string ALPs is a significant constraint (M. Stott et al, 1706.03236).
- Constraints on the axiverse mass spectrum from Black Hole superradiance (Stott & Marsh, 1805.02016; V. Mehta et al, 2103.06812)

The ALP-photon Lagrangian

K □ ▶ K @ ▶ K 할 X X 할 X | 할 X | ⊙Q Q Q

$$
\mathcal{L} \supset \sum_i \left(-\frac{1}{2} \partial^\mu \phi^i \partial_\mu \phi^i - \frac{1}{2} m_i^2 (\phi^i)^2 - g_i^\gamma \phi^i \tilde{F}^{\mu\nu} F_{\mu\nu} \right)
$$

The ALP-photon Lagrangian

$$
\mathcal{L} \supset \sum_i \left(\frac{1}{2} \partial^\mu \phi^i \partial_\mu \phi^i - \frac{1}{2} m_i^2 (\phi^i)^2 - g_i^\gamma \phi^i \tilde{F}^{\mu\nu} F_{\mu\nu} \right)
$$

Change basis so that only one ALP couples to electromagnetism:

$$
\phi^1 = \frac{\sum_i g_i^{\gamma} \phi^i}{\sqrt{\sum_i g_i^{\gamma^2}}}.
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

See Halverson et al, 1909.05257.

The ALP-photon Lagrangian

$$
\mathcal{L} \supset \sum_i \frac{1}{2} \partial^\mu \phi^i \partial_\mu \phi^i - \sum_{i,j} \frac{1}{2} M_{ij} \phi^i \phi^j - g^\gamma \phi^1 \tilde{F}^{\mu\nu} F_{\mu\nu}
$$

As the mass matrix is not diagonal, we will see oscillations between ϕ^1 and the other ALP fields.

ALP-photon Oscillations

Transformation between mass and electromagnetic bases:

$$
|\phi_{\text{mass}}^i\rangle = U_{ji} | \phi_{\text{EM}}^j\rangle ,
$$

This leads to oscillations between the ALP fields akin to neutrino oscillations.

ALP Oscillations

Electromagnetic ALP survival probability:

$$
P_{1\to 1} = 1 - 4 \sum_{i > j} |U_{1i}|^2 |U_{1j}|^2 \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E}\right),
$$

where $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$.

The two ALP case

イロト イ御 トメミト メミト ニミー のんぺ

Only two ALP mass eigenstates couple to electromagnetism:

$$
\mathcal{L} \supset \sum_i \left(\frac{1}{2} \partial^\mu \phi^i \partial_\mu \phi^i - \frac{1}{2} m_i^2 (\phi^i)^2 \right) - g_1^\gamma \phi^1 \tilde{F}^{\mu\nu} F_{\mu\nu} - g_2^\gamma \phi^2 \tilde{F}^{\mu\nu} F_{\mu\nu}
$$

The two ALP case

K □ ▶ K @ ▶ K 할 X X 할 X | 할 X | ⊙Q Q Q

The mass basis and the electromagnetic basis are related by

$$
\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \phi_\gamma \\ \phi_h \end{pmatrix},
$$

$$
\theta = \cos^{-1} \left(\frac{g_1^\gamma}{\sqrt{g_1^{\gamma 2} + g_2^{\gamma 2}}} \right).
$$

The two ALP case

In the absence of a background magnetic field, the probability of an electromagnetic ALP oscillating into a hidden ALP is

$$
P_{\phi_{\gamma}\to\phi_h} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right),
$$

where $\Delta m^2 = m_1^2 - m_2^2$, L is the propagation length and E is the ALP's energy.

CAST

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Reproduced from 1705.02290.

CAST

- Assume that m_1 and m_2 are both negligible.
- Primakoff production in the Sun produces the state ϕ_{γ} .
- ALPs produced electromagnetically in the Sun may oscillate into hidden ALPs as they travel to Earth, and therefore be unobservable to CAST.

CAST ALP spectrum

Average electromagnetic ALP survival probability over the sun's ALP spectrum:

$$
P_{\phi_{\gamma} \to \phi_{\gamma}} = 1 - \sin^2 2\theta \frac{\int_{2 \text{ keV}}^{7 \text{ keV}} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \frac{d\Phi_a}{dE} dE}{\int_{2 \text{ keV}}^{7 \text{ keV}} \frac{d\Phi_a}{dE} dE}
$$

ALP searches from SN1987A

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

- • ALPs produced in SN1987A in the Large Magellanic Cloud
- Some of these ALPs convert to γ -rays in the Milky Way magnetic field
- Non-observation of these γ -rays allows us to place bounds on g^{γ} .
- See e.g. A. Payez et al. 1410.3747

ALP searches from SN1987A

- Primakoff production in SN1987A produces the state ϕ_{γ} .
- ALPs produced electromagnetically in SN1987A may oscillate into hidden ALPs as they travel to the Milky Way, and therefore be unavailable for conversion to γ -rays.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

• Average over the SN1987A ALP spectrum.

ALP searches from SN1987A

K ロ ト K 御 ト K 君 ト K 君 ト È 299

What if many light ALP mass eigenstates have non-negligible coupling to electromagnetism?

In the electromagnetic basis, there will be many hidden ALP fields.

Electromagnetic ALP survival probability:

$$
P_{1\to 1} = 1 - 4 \sum_{i>j} |U_{1i}|^2 |U_{1j}|^2 \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right),
$$

In the long L limit for any given Δm_{ij}^2 , $L \gg \frac{4E_0}{\Delta m_{ij}^2}$;

$$
\frac{\int \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right) \frac{d\Phi_a}{dE} dE}{\int \frac{d\Phi_a}{dE} dE} \sim \frac{1}{2},
$$

where $\frac{d\Phi_a}{dE}$ is a general astrophysical ALP spectrum.

KO K K @ K K 통 K K 통 K 및 K YO Q @

In the long L limit for all Δm_{ij}^2

$$
P_{1\to 1} \sim 1-2\sum_{i>j} |U_{1i}U_{1j}|^2.
$$

U transforms between the electromagnetic and mass bases:

$$
U_{1i} = \frac{g_i^{\gamma}}{\sqrt{\sum_i g_i^{\gamma^2}}}
$$

K ロ K K (메 K K E K K E K A W K C K H K E K Y Q Q C

$$
P_{1\to1} \sim 1 - 2 \sum_{i>j} \left| \frac{g_i^{\gamma} g_j^{\gamma}}{\sum_k g_k^{\gamma^2}} \right|^2
$$

= $1 - 2 \frac{\sum_{i>j} (g_i^{\gamma} g_j^{\gamma})^2}{\sum_{i>j} (g_i^{\gamma} g_j^{\gamma})^2 + \sum_{j>i} (g_i^{\gamma} g_j^{\gamma})^2 + \sum_{i=j} (g_i^{\gamma} g_j^{\gamma})^2}$
~ 0 , for very large number of ALP fields

KORKA SERKER ORA

Many ALP mass eigenstate fields coupling to electromagnetism ↓ Electromagnetic ALP is a linear combination of many mass eigenstates ↓ The electromagnetic ALP mixes with many hidden ALPs ↓ Electromagnetic ALP survival probability is very low over large distances

- • String axiverse scenarios contain an 'electromagnetic' ALP and a number of 'hidden' ALPs.
- These ALPs undergo oscillations similar to neutrino oscillations.
- ALP oscillations may significantly reduce the experimental signals when an ALP is produced and then travels a long distance before being detected.

- This may effect ALP bounds from CAST and from SN1987A.
- Effects that only probe ALP production (e.g. stellar cooling) are not significantly affected by ALP oscillations.
- This work does not apply to the QCD axion, which gets a mass and coupling to electromagnetism from QCD effects.

Discussion

- Comparisons between different ALP search strategies become harder.
- This effect could reconcile the possible observation of ALP induced modulations in galactic pulsar spectra (Majumdar, Calore & Horns, 1801.08813) with the bounds on g^{γ} from CAST and from SN1987A - but not from stellar cooling bounds.

Discussion

メロメ メ御 トメ ミメ メモト \Rightarrow 299

Discussion

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

- The effect of oscillations could be very large when many ALP mass eignstates couple to electromagnetism.
- A similar mechanism will operate with other ALP couplings (see 23xx.xxxxx, FCD, James Maxwell and Jessica Turner).
- String axiverse phenomenology is very rich and warrants further study.