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Carroll, Field & Jackiw(1990); Harari &

‘What’s Cosmic B iref ringence? Sikivie (1992); Carroll (1998)

Uniform rotation of the polarization plane of the CMB photons

Signal of a parity-violating interaction in the
electromagnetic sector.

It shows up in the parity-odd power spectra of CMB

1
cEBobs = Esin(4[3) (CEE — cBB) WB)

=0 in standard scenario

B is the angle of rotation

— degenerate with a miscalibration angle

Minami and Komatsu (2020) developed a new method
to measure [ and the miscalibration angle
simultaneously —» B = 0.35 + 0.14 deg

E and B are the CMB polarization states (Stokes)



‘ Hint of Parity-Violating physics: Axions
B = 0.34213831deg (3.60)  Eskilt & Komatsu (2022)

Zero is excluded at 99.987% C.L. , B o v™® - n = —0.3579435

compatible with frequency independent signal

With the increase of sensibility, the confidence of detection is also increasing!

AXIONS can produce such a signal!

1 I~ = = . u U
Lint 3 ng,yquwF“V - geyPE - B Parity-odd term w_ > w \\
: P -

Modification of the Maxwell equations —

Left and Right-handed photons propagate with a different speed: At first order: wy ~k F 9oy '
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‘ Birefringence angle and axion parameter space
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Take-home message: Axions within 15 orders of magnitude
could explain the same* signal > AXIVERSE

Signal maximized for 10733eV < m, < 107%%eV



String Axiverse

String Theory predicts many axions distributed over many orders of
magnitude in mass and decay constant around GUT scale:

This discussion then suggests the following scenario for the distribution of f, and m for different
axions. The values of f, are inversely proportional to the area of the corresponding cycle. so they
do not change much from one axion to another. Given that the compactification is such that
S 2 200 for string contributions to the QCD axion, and no special fine tuning is allowed, all axion
decay constants in this scenario are likely to be close to the GUT scale Mgyt =~ 2 x 10'% GeV.
On the other hand, axion masses are exponentially sensitive to the area of the cycles, so that
we expect their values to be homogeneously distributed on a log scale. Given that, as argued
above, one can expect several hundred different cycles this suggests that there may be several
string axions per decade of energy. It has also been argued recently that the mixing of axions
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‘ Toy Model: Cosine Potential

Cosmic Birefringence With uniform initial conditions 6; = fi € [-m, 7]
g =N Cem  Pini  ooip oy i= _dem_ (B) = 0 the mean is zero,
(=0 2nfqi 2 Pyt 2nfq
but the VARIANCE grows with VN
&
V() (B2) == [N, 07 = 0.06VN deg — f~0.3 deg
| | N(10733eV <m, <1072%V) =25 — Ngoc =6
i i Statistical treatment of (8 is ok!
| : .
- T Note: Nipr = Ngee X log =6 X log— = 360

Mmin

This is assuming no mixing between different axions and c;~1...

We move to the quadratic potential and then consider the Monodromy potential



‘ Probability distributions of my, f,, ¢,

Initial field value follows a Gaussian

Presence of correlations between model
parameters e

s K
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distribution
— 0.04 714
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Probability density function (PDF) of the
mass within Hy < mg, < Mp, Mehta et al (2021)
— almost flat at very low masses 32 Emergent correlation
" :0 between
":—: , Mass and decay constant
5 p(Mmg, f)~0.5




‘Implications for the Quadratic Potential

&) The constraint comes from the different scaling of B and (2
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‘Implications for the Quadratic Potential

) The constraint comes from the different scaling of B and (2
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‘ Projecting the abundance at higher masses

With just the Birefringence we cannot test the mass
distribution at masses mg = 107*%eV~H,, , but assuming the

same distribution on f, and ¢;, at higher masses

N ¢ln
(Qg.toc) = 2 (902:)% j; (Mpl)>

Ndec 2 [Minax Tphi e (a 1072 10726 1024 102 102 10-'8
T0g(10) (902,.)= IS with N, 25( ¢>

Projected abundance

3

25(902,)% [Momax (fa)? Comparing it with the current bounds on Q,p;
<Q¢'wt> ~ 3log(10) \/ Mg, we find m,, ., that depends on (f,)!




‘Testing the Mass Distribution with
Birefringence Tomography

me

The B-angle is only approximately constant, l-dependence comes — 10720 gy

from the contribution at different epochs: — 1073 av
1. Recombination z ~ 1000 » m, < 3 x 1072 ¢V — 107312 oy
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Independent on the total number of axions across all masses! .!
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‘ Effect of correlations: mass and decay constant

The presence of correlations weights differently the contribution from different axions:
* p(my, fy) > 0 —> contribution from heavier axions is suppressed Lroc ~ Brei

* plmg, f,) <0 — contribution from lighter axions is suppressed Brec > Brei

This changes the emergent distribution of Byei/Brec
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‘ Conclusions

The signal can be explained with several axions per decade — depending on ¢;, and f,

The axion abundance sets a general bound on f, < 107 GeV, the bound changes by:
0(1) in the presence of correlation p(fy, ¢in)
0(10) for the Monodromy potential

Expectation at higher masses of the abundance suggests a link between m,, ., and (f,)
= Mgy ~1072%V for (f,)~101GeV

Birefringence tomography will allow testing Axiverse PDF's

—mass distribution and presence of correlations p(mgy, fz, Pin)

Cosmic birefringence as a complementary test for the Axiverse at lower masses (lower than those
accessible to Superradiance)



Thank you for your attention!

sgasparotto@ifae.es



‘ Aligned case

The expectation changes if the initial value
s not randomly distributed around zero

but it has a preferable sign.
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‘ Aligned case

The expectation changes if the initial value
s not randomly distributed around zero

but it has a preferable sign.
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‘ Monodromy potential

Monodromy potential, asymptotically flat at large field values

S

V(g) =

M?*m
2p

2

[(1 +

¢2
M2

1
p=3

The results change depending on the

initial condition ¢;, the mass m and the transition scale M,

Three types of evolution: linear potential, quadratic potential and transition of behavior
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