Direct search for dark matter axion with MADMAX

Fabrice Hubaut, Pascal Pralavorio

CPPM/IN2P3 – Aix-Marseille Université (Marseille, FRANCE)

- 1- Scientific context
- 2- MADMAX principles and set-up
- 3- Prototyping (magnet, receiver, booster)
- 4- French contributions
- 5- Timeline

Axions++ Workshop – 26 September 2023

Scientific context (1/2)

□ Haloscopes (using a-γ coupling) main way to search for Dark Matter axion

MADMAX can probe the favored post-inflationary $m_a = O(100) \mu eV^*$ range

**Nat. Com.* 13 (2022) 1, 1049 : 40 < m_a [μeV] <180

Scientific context (2/2)

Haloscope experimental challenges

- Convert axions into photons [E field of $O(10^{-12}, \frac{B}{10T})$ V/m] \rightarrow high B_{field} [B >> 1T]
- Boost E_{field} [up to detectable P~10⁻²² W] → resonant set-up
- Scan over range of axion mass
 tunable set-up [precision mecanics]

MADMAX (1/2)

White Paper [EPJC 79 (2019) 186, 1901.07401]

Principles

Constructive interference of coherent photon emission at dielectric layers surface (~leaky resonators cavities): boost (β²) wrt mirror only

• Axion mass scan : by moving discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

MADMAX exploits a new exp. approach to cover an uncharted phase space

~ 50 people, French (2), German (6), Spanish (1) and US (1) institutes

Start with prototyping phase to validate concept: cutting-edge R&D

P. Pralavorio

Magnet for prototype

CERN borrows us the world largest warm bore dipole magnet

- Jun 1978 : Installation in the North Area at CERN
- Sep 2020 : CERN RB approves usage by MadMax (YETS)
- Mar 2021 : full refurbishing around magnet area
- Mar 2022 : installation of new power converters
- Apr 2022 : magnet recommissioning

7.5

5.0

21 days at 1.6 T (2023)

Days since 24-March 2023

12.5 15.0 17.5

20.0

10.0

0.0

2.5

0.2

0.0

Receiver system for prototype

Composed of

- Low Noise Amplifier (LNA) ...
 - ✓ "Classic" HEMT

- ... connected to custom-made receiver
 - ✓ Three mixing stages to down sample from 20 GHz to 50 MHz
 - ✓ Fast Fourier Transform in 4 samplers → 1% dead time
 - Tested at CERN in 2022 but difficult to move + some saturation & time instability
- ... connected to commercial spectrum analyzer (SA)
 - ✓ Tested at CERN in 2023 : stable, no saturation but higher dead time*

• ... P (W) calibrated with a noise diode (50 K) \rightarrow System temperature (T_{sys} in K)

^{*} Improve dead time next year by adding data streaming

Develop the booster concept

□ Address the two main challenges

- Move the disks at μm level precision at cold and under high B-field
- Understand RF behavior → Calibrate boost factor

	Name	Goal	Туре	Made of	Avail.	Test Room Temp. Cold (10 K)
	P200	Piezo-motor + mechanics	Open Booster	1 moveable disk φ = 200 mm	2021	2022
	CB100	RF studies + First physics	Closed booster	3 fixed disks $\phi = 100$ mm	2021	2022, 23, 24
	CB200	RF studies + First physics	Closed Booster	4 fixed disks ϕ = 200 mm	2022	24
	OB300	Scan ALP around 100 μeV	Open Booster	3-20 moveable disks ϕ = 300 mm	2024	25, 26?

Gradually building the 'final' booster design

Disk drive (1/2)

Name	Goal	Concept	Made of	Avail.	DESY magnet test
P200	Piezo-motor + mechanics	Open Booster	1 moveable disk φ = 200 mm	2021	2022

Successful test of JPE piezo motor at 5 K and 5.3 T (ALP magnet in DESY)

Build full mechanical structure of Open Booster and insert 1 mirror + 1 disk (3 piezo motors)

Disk drive (2/2)

RF (1/3)

P. Pralavorio

Name	Goal	Concept	Made of	Avail.	Morpurgo test
CB100	RF studies	Closed booster	3 fixed disks $\phi = 100$ mm	2021	2022

ALP Physics (1/3)

Name	Goal	Concept	ncept Made of		Morpurgo test
CB100	First physics	Closed booster	3 fixed disks $\phi = 100$ mm	2021	2022, 2023

P. Pralavorio

Very stable with time over 21 days \rightarrow First physics in prep.

ALP Physics (2/3)

Name	Goal	Concept	Made of	Avail.	Morpurgo test
CB100	RF studies + First physics	Closed booster	3 fixed disks φ = 100mm	2021	2024

Develop a 'cheap' cryostat with CERN cryolab to cool the booster + LNA \rightarrow Validated the principle in 2023

ALP Physics (3/3)

Name	Goal	Concept	Made of	Avail.	Morpurgo test
OB300	Scan ALP around 100 μeV	Open Booster	3-20 moveable disks φ = 300 mm	2024	2025, 26?

Open Booster inserted in a Stainless Steel cryostat *(to be delivered in Mar 2024)*

Morpurgo CERN area refurbished to host the SS cryostat

Long cold run + mass scan in 2025 (26?)

MADMAX & France

□ Two French institutes joined MADMAX in 2020

- CPPM : precision mechanics, CERN tests coordination, simulation / data analysis
- Institut Néel : final ultra-low noise amplifier
- + CEA-IRFU : work on final magnet design

+ CNRS IRL ``DMLab" (with Helmholtz Inst.) : MADMAX is a central project

MADMAX looking for new (French) institutes to join !

MADMAX & CPPM

Precision mechanics (μm)

- Precision 3D measurements of disk
- Fabrication of disc support rings

x (mm

 Next : Design of the mechanical support of the OB300 booster

Coordination of proto tests at CERN

- Initiate the choice of the magnet
- Prepare infrastructure around the magnet

 Coordinate the tests during beam shutdown periods (1 month / year)

□ Simulation / data analysis

 PhD student started Oct. 2022 on P200 and CB100 data analysis + simulation of OB300

-50

y [mm]

-50

-75

-100 -

-100

MADMAX timescale

P. Pralavorio

Axion scales

Axion/ALP searches

Coupling to photon (most) promising way to detect axion

G10 cryostat

Spectrum Analyzer

2023 \rightarrow Keysigth : N9040B

2024 → Rhode&Schwarz FSW26 with streaming option

CB calibration

1- Power (W/kHz) to Thermal Noise Temp. (K) :

- Use a well calibrated diode with a 30 dB Attenuator
- T Diode On = Room Temperature + 50K = 345 K
- T Diode Off = Room Temperature = 295 K
- With P (Diode On), P (Diode Off), estimate reflections
- From P (LNA + Booster), P (Diode On), P (Diode Off) deduce T (LNA + Booster)

2- ADS model (I_n, U_n) for LNA Noise

• Short / Open / Load with RF switch gives access to circuit parameters

3- Reflectivity measurements with a VNA

• Should match the 3D COMSOL simulation of the booster + taper

4- Merge ADS and COMSOL simu \rightarrow Tsys (K)

- Should match the measured Tsys
- Wavy because of coherent and destructive interference (different propagation length) when injecting the LNA noise in the booster

5- Deduce the Booster factor from the model

• Including uncertainties

Procedure is being finalized

OB calibration (1/2)

Boost factor determined using Bead Pull Method (non-resonant perturbation theory) + reciprocity theorem J. Egge, <u>JCAP 04 (2023) 064</u>

OB calibration (2/2)

Test with a single disk (low boost factor)

Towards final magnet / receiver

Progresses on final magnet

 Design completed: 2x9 skateboard coils with novel copper CICC conductor [NbTi with Cu jacket @ 1.8K]

- Recently demonstrated that coils will be safe in terms of quench protection
- Next : Design, manufacture and test a small MADMAX coil (6T)

Progresses on final receiver

- Very low noise pre-amplifier [P_{sig}~T_{sys}] HEMT (G=33 dB, 4K added noise) below 40 GHz
- Josephson Junction being developed to further minimize noise (quantum limit)

TWPA prototype with G>20 dB and 1K added noise at 10 GHz

• Next: >40 GHz techno. to be developed