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The Model
A new light pseudoscalar a might well be an axion-like particle (ALP), i.e. the pseudo-Goldstone
boson of an approx. U(1)PQ global symmetry, spontaneously broken at a high scale fa (⇒ light)

Axion-like particle (a) mediator between the SM
fermions (f ) and the DM (χ)a U(1)PQ charged
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gaχχ ≡ Cχ/fa, gaff ≡ Cf /fa, no coupling to gauge bosons at tree-level but couple via loops

• a can emerge naturally from extended Higgs sector ⇒ also expect dim-5
couplings

• If a was (DFSZ-like) QCD axion, multiple astrophysical and laboratory
constraints (see [DiLuzio’20] for overview). (may be possible to circumvent
these constraints by model-building)

• Therefore assume that the a mass is mainly due to some explicitly
U(1)PQ-breaking effect other than the anomaly (no ma gaff relation and evade
constraints)
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Dark matter generation beyond freeze-out

• Assuming initial abundance zero after reheating and DM and ALPs gradually
produced by scattering processes in thermal plasma.

• We consider the following possibilities

▶ Small gaχχ and gaff , DM never reaches thermal eq. with SM or
ALPs ⇒ freeze-in. Either directly via f f̄ → χχ̄ or e.g. f f̄ → ag
followed by aa → χχ̄ (where the ALP may or may not be in
equilibrium with the SM [Bélanger et al’20],) plus 2 → 3 scattering
f f̄ → hχχ̄

▶ Intermediate gaff , ALPs not in eq. with SM, but if gaχχ sufficiently
large, in eq. with DM ⇒ freeze-out from a thermally decoupled
dark sector, or to put it simply, decoupled freeze-out (DFO), see
[Chu et al’12], and more recently [Hambye’19].

• Let’s study how to solve the Boltmann equations in these different cases
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Coupled Boltzmann equations
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Coupled Boltzmann equations
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Coupled Boltzmann equations
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Determining the temperature of the hidden sector-I

Solving the Energy transfer Boltzmann equation we can obtain the HS energy
density ρ′. The temperature T ′ of HS calculated from ρ′ via the equation of state:

∂ρ′

∂t
+ 3H

(
ρ′ + P ′) =

∫
d3p

(2π)3
C [f (p, t)] using P ′ = 1

3 ⟨p
∂E
∂p

⟩.

where ρ′ + P ′ = ρa + ρχ + Pa + Pχ

In our model, complication as not f f̄ → aa (see [Chu et al’12]) but f f̄ → ag ,
gf → af +f f̄ → a.

Initially for T ′ > mχ,ma ALPs and DM will be ultra-relativistic, P ′ = ρ′/3, and
universe radiation-dominated ρ ∝ T 4:
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a (T ′) + Peq
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⇒ Here the equation for T ′ can be solved independently
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Determining the temperature of the hidden sector-II
For T ′ ≲ ma,mχ, HS particles become non-relativistic, and interactions will freeze
out ⇒ T ′ determined together with nχ and na. 1:
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Constraints on our ALP
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• Revisit constraints from electron beam dumps, rare B and K
decays, astrophysics, dark matter searches and cosmology.

• In particular, for our specific ALP scenario we (re)calculate and
improve beam dump, flavour and supernova constraints.
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Freeze-in vs. constraints on our ALP
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DFO vs. constraints on our ALP
mχ/ma = 10
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• Tiny gaff ⇒ ALP relatively long lived ⇒ Consequences for BBN
• For ma ≲ 2mµ constraints are very similar, see [Kawasaki et al.’20] for very long-lived

ALPs with sub-GeV ma excluding τa ∼ 103 − 105 s
• For 2mµ ≲ ma ≲ 1 GeV, EM bounds probably apply too, llifetimes not excluded.
• For hadronic decays τ ∼ 0.1 s can be excluded, see [Kawasaki et al’17]
• ALPs decaying into photons can re-equilibrate with the SM, see [Millea et al’15],

excluding much shorter lifetimes, but these should be alleviated as our dark sector is
at T ′, to be studied in more detail
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Conclusion
What we have done
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• Our simple framework of an axion-like particle
mediating DM leads to various alternative DM
genesis scenarios

• Performed a detailed numerical calculation of full
region of parameter space giving the correct relic
density in various regimes, presented DFO and
Freeze-in regions today

• Re-analysed relevant constraints (normally
constraints for ALPs for photon coupling) to verify if
these regions of parameter space are allowed

Future work

E (∂t − Hp∂p) f = C [f ]

• Want to assess the basic assumption of a negligible
relic density after reheating

• Improve accuracy, in particular in sequential freeze-in
region but also DFO, by solving unintegrated
Boltzmann equation

• Assess the potential sensitivity of future experiments
to the region of interest, already inspired by the
workshop and interested hearing more ideas!
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Determining the HS equation of state
3(ρ′ + P′) = 3(ρa + ρχ + Pa + Pχ) .

Radiation dominated 3(ρ′ + P′) = 4ρ′, we can change variables using ∂
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Boundaries of DFO region
• Relic density For connector couplings, gaff , which are too small, the hidden sector

does not become sufficiently populated. Although gaχχ might be large enough to
establish equilibrium between the hidden sector particles, neq

χ (T ′) can never reach the
amount of DM density observed today. This is indicated by the lower boundary.

• a ↔ SM On the other hand, if the connector coupling gaff is too large, the
interactions between the hidden sector and the SM become strong enough to
establish thermal equilibrium. Depending on the hidden sector coupling, the DM is
then either produced by freeze-in (see section ??) or thermal freeze-out. We remark
that the numerical solution close to the transition between the freeze-in and the DFO
regime is challenging and we chose this upper boundary conservatively.

• gaχχ The DM-mediator interaction is (cf. eq. (??))

Cχ
mχ

fa
aχ̄γ5χ ≡ gaχχmχaχ̄γ5χ . (1)

Our effective theory is valid only below the scale fa. Thus, the reheating temperature
TRH should be below this scale to safely ignore UV contributions. On the other hand,
TRH has to be higher than mχ. We consequently need a hierarchy fa ≳ TRH ≳ mχ,
i.e. small gaχχ = Cχ/fa, and this is the reason why the DM (the ALP for a fixed
mass ratio) should not be too heavy.

• QCD Finally, we employ a perturbative description of the strong interactions, only
convergent at high enough energies. The DM abundance should therefore be set by
interactions happening at temperatures before the QCD phase transition. In practice,
we set the upper boundary labelled “QCD” by requiring that the χ-particles freeze out
at temperatures above the threshold Tpert = 600 MeV.
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Flavour Constraints
For 2me ≲ ma ≲ 5 GeV, best chance of detecting ALP could be via heavy mesons decays

Consider constraints from B and K FCNC decays (b → sa or s → da): B → K (∗)ℓ+ℓ− and K → πℓ+ℓ− or
B → K (∗)νν̄ and K → πνν̄. For ma < 2me , a → γγ and a long lived ⇒ invisible
The main experimental constraints that we consider in this work are therefore:

• B+ → K+X (→ µ+µ−) for long-lived scalar X (LHCb [LHCb’16]), the 95% C.L. upper limits on the
branching ratio are given as a function of the lifetime of X in the range 0.1 to 1000 ps.

• B0 → K∗0X (→ µ+µ−) where X is a scalar particle with mass in the range 214 to 4350 MeV
(LHCb [LHCb’15]), the 95% C.L. upper limits on the branching ratio are given as a function of the
mass and lifetime of X . The limit is of the order 10−9 over the majority of this range.

• B0 → K (∗)X (→ µ+µ−) at fixed target experiments, limits can be extracted from CHARM results as
described in ref. [Dobrich’18].

• K+ → π+νν̄ from NA62 [NA62’21], where 90% C.L. upper limits are given for the K+ → π+X
branching ratio, where X is a long-lived scalar or pseudoscalar particle decaying outside the detector,
for lifetimes longer than 100 ps.

• K± → π±e+e−, where NA48/2 [NA482’09] provides a 90% C.L. upper limit (here we assume the
lifetime should be less than 10 ns).

• K± → π±X (→ µ+µ−) for long-lived X (NA48/2 [NA482’16]) , the 90% C.L. upper limits on the
branching ratio are given as a function of the lifetime of X in the range 100 ps to 100 ns.

• CHARM constraints [CHARM:1985anb,CHARM:1983ayi] from [Dobrich’18jyi]2

Calculate B → K (∗)a and K → πa BR (see [Gavela’19] and [MartinCamalich’20]):
• FFs for B → K from [Bharucha’10im] and for B → K∗ from [Bharucha’15].
• For K → πa, follow [Alves’17], accounting for octet enhancement in non-leptonic K decays.

2We are very grateful to the authors of ref. [Dobrich’18jyi] for providing us with the bounds they
obtained in the ma − gaff plane via private communication.
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BBN constraints
If a substantial number of ALPs are produced in the very early universe, they can affect
the successful predictions for big bang nucleosynthesis

For heavier ALPs, electromagnetic showers produced in ALP decays during or after BBN can destroy the newly
created nuclei and thus directly alter the light element abundances, see [Kawasaki’20,Depta’20] for recent
studies. For ALP masses above the GeV scale, hadronic showers give rise to additional constraints, excluding
abundant hadronically decaying particles with lifetimes down to about O(0.1 s). This is because cascade
hadrons can scatter off background protons, which once again increases the neutron-to-proton ratio
[Reno’87]; see [Kawasaki’17] for a recent numerical analysis.3

• For ma ≲ 2mµ, i.e. dominantly decaying into γγ and e+e−, constraints are very similar.
Use [Kawasaki’20qxm] on very long-lived ALPs in sub-GeV mass range. Generically speaking, they
exclude sufficiently abundant particles decaying electromagnetically with lifetimes τa ∼ 103 − 105 s.
The bound labelled “electromagnetic decays” in figure ?? was obtained by applying the bounds on the
ALP’s lifetime from figures 4 and 5 in ref. [Kawasaki’20], interpolating between the mass of the
decaying particle and the dominant decay channel of the ALP.

• For 2mµ ≲ ma ≲ 1 GeV, a → µ+µ− dominates. In principle, the applicable constraints are the
electromagnetic ones here – see also the discussion in ref. [cosmobounds] – and the lifetime is short
enough for them not to matter.

• For hadronic decays bounds more severe, and lifetimes above τ ∼ 0.1 s can be excluded. In
ref. [Kawasaki’17] bounds are provided on hadronically decaying particles with masses in the
GeV-TeV range. The smallest mass for which results are available is 30 GeV. We apply the
corresponding bound to our model, extrapolating from the given shapes that the bounds will remain
approximately constant for lower masses.

3Taking into account the branching ratios of the various decay channels, the energy injection from ALPs is
sufficient in the DFO region for these constraints to apply. However, photo-dissociation is clearly not the only
possible scenario. For instance, ALPs decaying into photons can re-equilibrate with the SM, a scenario which
was studied in depth in ref. [Millea’15], excluding much shorter lifetimes. However, since the temperature of
our hidden sector T ′ is in general well below T , we expect these bounds to be alleviated in our
case [Depta’20].
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