

Università degli Studi di Padova

Axion Helioscopes as Solar Thermometers

Sebastian Hoof

Based on [2306.00077] with J. Jaeckel & L. J. Thormaehlen

Axions++, LAPTh Annecy 27 September 2023

I msca_axitools

Recap: axion helioscopes

- Axions produced in the Sun travel to Earth, convert into photons in a B-field inside an opaque tube^{Talk by J. Vogel (Tue)}
- ➤ Track the Sun with X-ray detectors^{Talks by L. Gastaldo, J. von Oy (Tue)}
 - Signal prediction: need solar model, axion production rates

IAXO can...

- ... probe more realistic QCD axion models than CAST!
- ... determine mass & couplings^{1811.09278, 1811.09290}, simultaneously distinguish QCD axion and solar models^{2101.08789}
- ... measure solar metallicities^{1908.10878, 2101.08789}
- ... solar *B*-field (profiles),^{2005.00078, 2006.12431, 2010.06601}
- ... measure the solar temperature profile ^{2306.00077}

IAXO can...

- ... probe more realistic QCD axion models than CAST!
- ... determine mass & couplings^{1811.09278, 1811.09290}, simultaneously distinguish QCD axion and solar models^{2101.08789}
- ... measure solar metallicities^{1908.10878, 2101.08789}
- ... solar *B*-field (profiles),^{2005.00078, 2006.12431, 2010.06601}
- ... measure the solar temperature profile^{2306.00077}
 - >> Post-discovery multi-messenger physics with IAXO

Axion interactions inside the Sun

$$\mathcal{L}_{ALP} = \frac{(\partial_{\mu}a)^{2}}{2} - \underbrace{\frac{m_{a}^{2}a^{2}}{2}}_{m_{a} \ll T_{\odot}} - \frac{g_{a\gamma}}{4} a F \widetilde{F} + \underbrace{\frac{g_{ae}}{2m_{e}}}_{2m_{e}} (\partial_{\mu}a) \overline{e}\gamma^{\mu}\gamma^{5}e \underbrace{+\mathcal{L}_{nucl}}_{[2111.06407]} \mathcal{L}_{QP}$$

$$\overset{\gamma}{\underset{e^{-}/I^{+}}{}} \underbrace{e^{-}/I^{+}}_{Primakoff}(P) \qquad plasmon (LP, TP) \qquad e^{-} \underbrace{I^{+}}_{Compton (C)} e^{-} \underbrace{I^{+}}_{e^{-}} \underbrace{I^{+}}_{I^{+}} \underbrace{I$$

Solar axion flux uncertainties

10,000 Monte Carlo sims of low-Z (AGSS09) & high-Z (GS98) solar models^{astro-ph/0511337 + A. Serenelli update} to estimate uncertainties^{2101.08789}

ABC fluxes

Solar axion flux uncertainties

10,000 Monte Carlo sims of low-Z (AGSS09) & high-Z (GS98) solar models^{astro-ph/0511337+ A. Serenelli update} to estimate uncertainties^{2101.08789}

Systematic shift between low-Z and high-Z models (metallicity problem)

Solar axion flux uncertainties

10,000 Monte Carlo sims of low-Z (AGSS09) & high-Z (GS98) solar models^{astro-ph/0511337+ A. Serenelli update} to estimate uncertainties^{2101.08789}

Statistical fluctuations; similar for low-Z and high-Z models, smaller than systematics

Solar metallicity problem solved?

A&A 661, A140 (2022) https://doi.org/10.1051/0004-6361/202142971 © E. Magg et al. 2022

Observational constraints on the origin of the elements

IV. Standard composition of the Sun

Ekaterina Magg¹, Maria Bergemann^{1,5}, Aldo Serenelli^{2,3,1}, Manuel Bautista⁴, Bertrand Plez⁷, Ulrike Heiter⁶, Jeffrey M. Gerber¹, Hans-Günter Ludwig⁸, Sarbani Basu⁹, Jason W. Ferguson¹⁰, Helena Carvajal Gallego¹¹, Sébastien Gamrath¹¹, Patrick Palmeri¹¹¹, and Pascal Quinet^{11,12}

- New composition: MB22^{2203.02255}
- First to reproduce sound velocity profile c(r) with both photospheric and meteoritic abundances? (However: potential issues?^{2308.13368})

Solar metallicity problem solved?

A&A 661, A140 (2022) https://doi.org/10.1051/0004-6361/202142971 © E. Magg et al. 2022

Observational constraints on the origin of the elements

IV. Standard composition of the Sun

Ekaterina Magg¹, Maria Bergemann^{1,5}, Aldo Serenelli^{2,3,1}, Manuel Bautista⁴, Bertrand Plez⁷, Ulrike Heiter⁶, Jeffrey M. Gerber¹, Hans-Günter Ludwig⁸, Sarbani Basu⁹, Jason W. Ferguson¹⁰, Helena Carvajal Gallego¹¹, Sébastien Gamrath¹¹, Patrick Palmeri¹¹¹, and Pascal Quinet^{11,12}

- New composition: MB22^{2203.02255}
- First to reproduce sound velocity profile c(r) with both photospheric and meteoritic abundances? (However: potential issues?^{2308.13368})
- Benefits of our open-source code: re-compute all fluxes for models based on new compositions once available

Primakoff flux on the solar disc

Primakoff flux: dominant for KSVZ, 50% (99%) of the flux is contained within about $0.15\,\rm R_{\odot}$ (0.5 $\rm R_{\odot}).$

 Left: simulated axion image in CAST helioscope^{hep-ex/0702006}

- Left: simulated axion image in CAST helioscope^{hep-ex/0702006}
- ≈ spherically symmetric thanks to great X-ray optics
- Also: photon counting detectors with high number of pixels

- Left: simulated axion image in CAST helioscope^{hep-ex/0702006}
- ≈ spherically symmetric thanks to great X-ray optics
- Also: photon counting detectors with high number of pixels
- Estimate photon counts in rings about the centre of the signal region to obtain radial information

 Left: expected signal in IAXO. We use 128 × 128 pixels, 20 radial and 4 spectral bins

- Left: expected signal in IAXO. We use 128 × 128 pixels, 20 radial and 4 spectral bins
- Many pixels: photon counts/pixel ≈ equally distributed, integrate flux over radial bins
- Generate 1000 pseudodata sets for IAXO, "invert" solar axion image, fit axion and solar model parameters

The (simplified) Primakoff production rate

$$\Gamma^{\mathsf{P}}(E_{a}) = \frac{g_{a\gamma}^{2} \kappa_{s}^{2} T}{32\pi} \left[\left(1 + \frac{\kappa_{s}^{2}}{4E_{a}^{2}} \right) \log \left(1 + \frac{4E_{a}^{2}}{\kappa_{s}^{2}} \right) - 1 \right] \frac{2}{\mathrm{e}^{E_{a}/T} - 1}$$

The (simplified) Primakoff production rate

$$\Gamma^{\mathsf{P}}(\mathcal{E}_{a}) = \frac{g_{a\gamma}^{2} \kappa_{s}^{2} T}{32\pi} \left[\left(1 + \frac{\kappa_{s}^{2}}{4E_{a}^{2}} \right) \log \left(1 + \frac{4E_{a}^{2}}{\kappa_{s}^{2}} \right) - 1 \right] \frac{2}{\mathrm{e}^{\mathcal{E}_{a}/T} - 1}$$

- Only depends on T(r), $\kappa_s(r)$ (local) and $g_{a\gamma}$ (global quantity)
- Ignores *e*[−] degeneracy and other corrections (few %)

The (simplified) Primakoff production rate

$$\Gamma^{\mathsf{P}}(E_{a}) = \frac{g_{a\gamma}^{2} \kappa_{s}^{2} T}{32\pi} \left[\left(1 + \frac{\kappa_{s}^{2}}{4E_{a}^{2}} \right) \log \left(1 + \frac{4E_{a}^{2}}{\kappa_{s}^{2}} \right) - 1 \right] \frac{2}{\mathrm{e}^{E_{a}/T} - 1}$$

- Only depends on T(r), $\kappa_s(r)$ (local) and $g_{a\gamma}$ (global quantity)
- Ignores *e*[−] degeneracy and other corrections (few %)
- ► Can break parameter degeneracies with spectral information!

$$\bar{n}_{i,j} \propto \int_{\rho_i}^{\rho_{i+1}} \mathrm{d}\rho \ \int_{\rho}^{1} \mathrm{d}r \ \frac{r \rho}{\sqrt{r^2 - \rho^2}} \underbrace{\left(\int_{\omega_j}^{\omega_{j+1}} \mathrm{d}\omega \ \frac{\omega^2}{2\pi^2} \Gamma^\mathsf{P}(r, \omega)\right)}_{\equiv \bar{\Gamma}_j^\mathsf{P}(r)}$$

Piecewise-constant interpolation for $\bar{\Gamma}_i^{\mathsf{P}}$

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \underbrace{\left(\int_{\omega_{j}}^{\omega_{j+1}} \mathrm{d}\omega \; \frac{\omega^{2}}{2\pi^{2}} \, \Gamma^{\mathsf{P}}(r_{i}, \, \omega) \right)}_{\gamma_{i,j}} \Theta(r - r_{i}) \, \Theta(r_{i+1} - r)$$

Piecewise-constant interpolation for $\bar{\Gamma}_i^{P}$ + compute the $\bar{n}_{i,j}$ integral

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \underbrace{\left(\int_{\omega_{j}}^{\omega_{j+1}} \mathrm{d}\omega \, \frac{\omega^{2}}{2\pi^{2}} \, \Gamma^{\mathsf{P}}(r_{i}, \, \omega) \right)}_{\gamma_{i,j}} \, \Theta(r - r_{i}) \, \Theta(r_{i+1} - r)$$

$$\bar{n}_{i,j} \propto \int_{r_i}^{r_{i+1}} \mathrm{d}\rho \,\rho \,\sum_{k=1}^{n_{\rho}} \int_{\rho}^{1} \mathrm{d}r \,\frac{r}{\sqrt{r^2 - \rho^2}} \,\gamma_{k,j} \,\Theta(r - r_k) \,\Theta(r_{k+1} - r)$$

$$= \frac{1}{3} \left[\gamma_{i,j} \, \varDelta_{i+1;i}^3 + \sum_{k=i+1} \gamma_{k,j} \left(\varDelta_{k+1;i}^3 - \varDelta_{k+1;i+1}^3 + \varDelta_{k;i+1}^3 - \varDelta_{k;i}^3 \right) \right]$$

with $\Delta^3_{\ell;m} \equiv (r_\ell^2 - r_m^2)^{3/2}$

► Can compute $\bar{n}_{i,j}$ analytically!

We write this as a matrix equation $\bar{n}_{i,j} = \sum_{k=1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j}$ with

$$\mathcal{M}_{ik} \propto \begin{cases} \Delta^3_{i+1;i} & \text{for } i = k, \\ \Delta^3_{k+1;i} - \Delta^3_{k+1;i+1} + \Delta^3_{k;i+1} - \Delta^3_{k;i} & \text{for } k > i, \\ 0 & \text{otherwise.} \end{cases}$$

We write this as a matrix equation $\bar{n}_{i,j} = \sum_{k=1}^{n_p} \mathcal{M}_{ik} \gamma_{k,j}$ with

$$\mathcal{M}_{ik} \propto \begin{cases} \Delta^3_{i+1;i} & \text{for } i = k, \\ \Delta^3_{k+1;i} - \Delta^3_{k+1;i+1} + \Delta^3_{k;i+1} - \Delta^3_{k;i} & \text{for } k > i, \\ 0 & \text{otherwise.} \end{cases}$$

Triangular matrix: set expected = observed counts, invert

$$n_{i,j} = \mathcal{M}_{ii}\gamma_{i,j} + \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j} \Rightarrow \gamma_{i,j} = \frac{1}{\mathcal{M}_{ii}} \left(n_{i,j} - \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j} \right)$$

We write this as a matrix equation $\bar{n}_{i,j} = \sum_{k=1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j}$ with

$$\mathcal{M}_{ik} \propto \begin{cases} \Delta^3_{i+1;i} & \text{for } i = k, \\ \Delta^3_{k+1;i} - \Delta^3_{k+1;i+1} + \Delta^3_{k;i+1} - \Delta^3_{k;i} & \text{for } k > i, \\ 0 & \text{otherwise.} \end{cases}$$

Triangular matrix: set expected = observed counts, invert

$$n_{i,j} = \mathcal{M}_{ii}\gamma_{i,j} + \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j} \Rightarrow \gamma_{i,j} = \frac{1}{\mathcal{M}_{ii}} \left(n_{i,j} - \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j} \right)$$

► Can also propagate errors; use when fitting $g_{a\gamma}$, T_i and κ_i

$$\sigma_{i,j}^2 \equiv \left(\Delta \gamma_{i,j}\right)^2 = \frac{1}{\mathcal{M}_{ii}^2} \left[n_{i,j} + \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik}^2 \, \sigma_{k,j}^2 \right]$$

Reconstruction in practice

- We want a closer approx. of $T(r) \Rightarrow$ splines? Sadly: ringing!
- Matrix invertible only if $n_{i,j} \neq 0 \Rightarrow$ uneven bin sizes

Reconstruction in practice

- We want a closer approx. of $T(r) \Rightarrow$ splines? Sadly: ringing!
- Matrix invertible only if $n_{i,j} \neq 0 \Rightarrow$ uneven bin sizes
- Choose direct fitting approach: general (shape-preserving) spline interpolation, compute integral again:

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \left[\gamma_{i,j} + \sum_{k=1}^{3} c_{k;i,j}(r-r_{i})^{k} \right] \Theta(r-r_{i}) \Theta(r_{i+1}-r) \,.$$

Reconstruction in practice

- We want a closer approx. of $T(r) \Rightarrow$ splines? Sadly: ringing!
- Matrix invertible only if $n_{i,j} \neq 0 \Rightarrow$ uneven bin sizes
- Choose direct fitting approach: general (shape-preserving) spline interpolation, compute integral again:

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \left[\gamma_{i,j} + \sum_{k=1}^{3} c_{k;i,j}(r-r_{i})^{k} \right] \Theta(r-r_{i}) \Theta(r_{i+1}-r) \,.$$

Problem: matrix not square, no inversion; need to directly fit g_{aγ}, T_i and κ_i to the n_{i,j}:

$$\Delta \chi^2 \equiv -2 \log L(g_{a\gamma}, \{\kappa_i, T_i\}) = 2 \sum_j \bar{n}_{i,j} - n_{i,j} \log(\bar{n}_{i,j})$$

Results

• Accurate T(r) reconstruction up to $0.5 \,\mathrm{R}_{\odot}$ ($0.8 \,\mathrm{R}_{\odot}$)

Results

- Accurate T(r) reconstruction up to 0.5 R_☉ (0.8 R_☉)
- Expected median stat. errors of 10% (16%)
- Difficulties for κ_s: shallow minima, weaker functional dependence, approximation used for Γ^P

Could we do the same reconstruction using neutrinos?

Reconstruct T(r) with ν s?!

Could we do the same reconstruction using neutrinos?

Reconstruct T(r) with ν s?!

No. Angular resolution $\sim 40^{\circ}$ vs the Sun's apparent size $\sim 0.5^{\circ}$, e^{-} recoil and ν path not aligned

➤ Helioscope X-ray optics offer superior spatial resolution

- Primakoff flux predicted at percent level ⇒ detection in IAXO = use axions as messengers for solar physics
- Accurate, model-independent(!) reconstruction of solar temperature profile T(r) with axions is possible
- Axion tomography with helioscopes would benefit from great X-ray optics
- Growing public software framework for solar axions (and other WISPs?) within MSCA project "AxiTools" O O

Three different reconstruction techniques

