Elisa Todarello (University of Turin and INFN Turin)

arXiv:2307.07403

axions++ 2023 Annecy, 27.09.2023

Robust bounds on ALP dark matter from dwarf spheroidal galaxies in the optical **MUSE-Faint survey**

> E. T., M. Regis, J. Reynoso-Cordova, M. Taoso, D. Vaz, J. Brinchmann, M. Steinmetz, S. L. Zoutendijk

cajohare/axionlimits: Axionlimits

ALP-photon interaction

 $\mathcal{L}_{a\gamma\gamma} = \frac{1}{4}gaF_{\mu\nu}\tilde{F}^{\mu\nu}$

Decay rate $\Gamma_{a \to \gamma \gamma} \sim 10^{-22} \text{ yr}^{-1} \left(\frac{g}{10^{-13} \text{ GeV}^{-1}} \right)^2 \left(\frac{m}{4 \text{ eV}} \right)^3$

cajohare/axionlimits: Axionlimits

Photo by ESO/G. Hüdepohl (atacamaphoto.com)

Photo by ESO/G. Hüdepohl (atacamaphoto.com)

Kinematics

Flux density from ALP decay

$\dot{n}_a(\vec{x}) = -\Gamma_a n_a(\vec{x})$

 $^{2\sigma_{\lambda}^{2}} \int d\Omega \, d\ell \rho_{a}[r(\theta,\Omega,\ell)] \, B(\Omega)$

 ℓ

 \star

Physics Letters B Volume 814, 10 March 2021, 136075

Searching for light in the darkness: Bounds on ALP dark matter with the optical MUSE-faint survey

Marco Regis ^{a, b} 은 쯔, Marco Taoso ^b 은 쯔, Daniel Vaz ^{c, d}, Jarle Brinchmann ^{c, e}, Sebastiaan L. Zoutendijk ^e, Nicolas F. Bouché^f, Matthias Steinmetz^g

- One dwarf spheroidal: Leo T

Five dwarf spheroidals

derived from D-factor from V. Bonnivard, et al., MNRAS 453 (1) (2015) 849-867

Likelihood for dark matter profile available from MUSE collaboration

- Dark matter rich
- High mass-to-light ratio
- •Typical mass $10^8 10^9 M_{\odot}$
- •Typical radius 1 kpc
- •DM energy density $ho \sim 4 \ {
 m GeV} \ {
 m cm}^{-3}$
- •Distance 100 kpc

Dwarf Galaxies

Sculptor dwarf galaxy. Photo by ESO.

The MUSE instrument

Multi Unit Spectroscopic Explorer

- Measures flux in ~3720 channels $4700~{\rm \AA} < \lambda < 9350~{\rm \AA}$ $2.65~{\rm eV} < m < 5.27~{\rm eV}$
- Wavelength sampling $1.25~{
 m \AA}$
- Spectral resolution $\lambda/\Delta\lambda > 10^3$
- Field of view $1' \times 1'$
- Spatial resolution $~\sim 0.5^{\prime\prime}$

30 arcsec 60.7 pc Leo T +

+ Sculptor

The MUSE-Faint Survey

30 arcsec 22.0 pc

Hya II

Zoutendijk+, The MUSE-Faint survey. III, 2112.09374

Signal

NFW profile

Cored profile

Integration radius

-10^{-12}	
-10^{-12}	
-10^{-12}	
-10^{-12}	
-10^{-12}	
-10^{-12}	
$\widetilde{\mathbf{a}}$	
$5 6 \times 10^{-13}$	

$$r_c$$

 r_{obs} [kpc]

- •Strongest bound in mass range 2.7 5.3 eV
- Improved robustness
- No evidence for axion dark matter found
- Infrared?
 - PRD 106, 095025, 2305.1341
 - Forecast sensitivity $g \sim 10^{-11}~{
 m Ge}$ galaxies

• Forecast sensitivity $~g\sim 10^{-11}~{ m GeV^{-1}}~{ m for}~m\sim 0.5-2~{ m eV}$ looking at dwarf