Cosmological Varying Kinetic Mixing

arXiv. 2302.03056

Xucheng Gan, DL

27/09/2023, Axion++ workshop

Outline

Lightning Review

- Dark photon dark matter A' and kinetic mixing ϵ
- Dark photon freeze-in through constant ϵ \bullet
- Scalar-controlled kinetic mixing $\epsilon(\phi)$
- UV model: scalar-photon coupling $d_{\rho}^{(1,2)}$
- Signals and constraints on $d_{\rho}^{(1,2)}$

This work

 $\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu}$

 $-\frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} - eA_{\mu}\bar{f}\gamma^{\mu}f$

 $\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{\epsilon}{2}F^{\mu\nu}F'_{\mu\nu} - \frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} - eA_{\mu}\bar{f}\gamma^{\mu}f$

 $\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} - \frac{1}{4}$

$A \to A + \epsilon A', \quad A' \to A'$

$$F'^{\mu\nu}F'_{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} - eA_{\mu}\bar{f}\gamma^{\mu}f$$

 $\mathcal{L} = -\frac{1}{A} F^{\mu\nu} F_{\mu\nu} + \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} - \frac{1}{A} F'^{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} - e A_{\mu} \bar{f} \gamma^{\mu} f$ $A \to A + \epsilon A', \quad A' \to A'$ $\mathscr{L} \supset -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{4}F^{'\mu\nu}F_{\mu\nu}' + \frac{1}{2}m_{A'}^2A'_{\mu}A^{'\mu} - \epsilon e A'_{\mu}\bar{f}\gamma^{\mu}f$

Dark Photon Dark Matter

Dark Matter Exists!

Dark matter consists 26.8% of the total mass-energy content. Dark matter particle interact very weakly with the standard model particles.

Dark Photon Dark Matter

Kinetic mixing as portal to the dark sector

 $\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu} \qquad \text{``Kinetic Mixing''}$

Simplest: dark sector consists of just a A'

A' Freeze-in: $\gamma \rightarrow A'$

 $\Omega_{A'} \sim \epsilon^2 \alpha^{3/2} \frac{m_{pl}}{T_{eq}}$ $\Omega_{A'} \sim 0.1$ $\epsilon \sim 10^{-12}$ 20

Berlin, Dror, XG, Ruderman 2022

Late time constraints $z \ll 1000$

Stellar Energy Loss: $\gamma \rightarrow A'$ A' Decay: $A' \rightarrow 3\gamma, A' \rightarrow e^-e^+$

Redondo, Postma 2005

Late time constraints $z \ll 1000$

Stellar Energy Loss: $\gamma \rightarrow A'$

$A' \text{Decay: } A' \rightarrow 3\gamma, A' \rightarrow e^- e^+$

Redondo, Postma 2005

Simplest DPDM freeze-in through the constant kinetic mixing is ruled out

time parameter?

So... What if we promote ϵ to a field-dependent variable?

Time-evolution of homogeneous single scalar field: KG equation in the FRW metric

 $\dot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$

 $\epsilon F^{\mu\nu}F'_{\mu\nu} \to \frac{\phi}{\Lambda}F^{\mu\nu}F'_{\mu\nu}$

Misalignment initial condition: $\theta_{\text{ini}} = \frac{\phi_{\text{ini}}}{f} \sim \mathcal{O}(1)$

Time-evolution of homogeneous single scalar field

Time-evolution of homogeneous single scalar field

 $m_0 \ll 10^{-25} eV$ $I_{\rm OSC} < I_{\rm res} \quad \epsilon_{\rm FI} \sim 10^{-12}$ $\epsilon_0 \sim \epsilon_{FI} \left(\frac{T_0}{T_{osc}} \right)$

 $T_{\rm osc} \sim \sqrt{m_{\phi} M_{\rm pl}}$

Bob Holdom 1985

Bob Holdom 1985

Constant Kinetic Mixing

 $\Psi: (e, e', M)$ $\Psi': (e, -e', M')$

$\epsilon = \frac{ee'}{6\pi^2} \log\left(\frac{M}{M'}\right)$

M = M': Constant mixing vanishes

Kinetic mixing is forbidden by $Z_2: \Psi \leftrightarrow \Psi', A \rightarrow A, A' \rightarrow -A'$

Field-dependent Kinetic Mixing

 $(M, M') \rightarrow (M + y\phi, M + y'\phi)$

 $\epsilon \rightarrow \frac{ee'}{6\pi^2} \log\left(\frac{M+y\phi}{M+y'\phi}\right) \simeq \frac{ee'(y-y')\phi}{6\pi^2 M}$

Field dependent fine-structure constant

The fine-structure constant becomes time-dependent

Measurement of the time-varying fine-structure constant

Atomic Clock

ξ_A varies for different atoms and transition channels

$$\frac{\delta(f_A/f_B)}{f_A/f_B} \propto$$

A. Arvanitaki, J Huang, and K. Van Tilburg, PRD, 2015

 $f_A \propto \alpha^{\xi_A + 2}$

 $\Delta \xi_{AB} d_{\gamma} \kappa \phi(t)$

Celestial Constraints on $\alpha(t)$

BBN

 $m_{np} = m_n - m_p$ $\Delta m_{np} \propto \frac{\Lambda_{\rm QCD}}{M_{\rm pl}} d_{\gamma}^{(n)} \phi$

Change He abundance

Y. V. Stadnik, V. V. Flambaum PRL 2015

L. Hamaide, H. Muller, and D. J. E. Marsh, PRD 2022

Equivalence Principle Test

Ultralight ϕ provides the 5th force and modifies the Newtonian interaction

 $V_{ij}(r)$ =

Eötvös parameter

Joel Bergé, Philippe Brax, Gilles Métris, et.al. PRL 2018

$$= -\frac{Gm_im_j}{r} \left(1 + \alpha_{ij} \mathrm{e}^{-r/\lambda}\right)$$

$$= \frac{|\vec{a}_i - \vec{a}_j|}{|\vec{a}_i + \vec{a}_j|} = (-1 \pm 27) \times 10^{-15}$$

 $\eta \propto \begin{cases} \left(d_e^{(1)}\right)^2, & \text{linear} \\ \left(d_e^{(2)}\right)^2 \rho_{\phi}, & \text{quadratic} \end{cases}$

pheno of d_{γ} from $\epsilon(\phi)$ UV model **Linear Coupling** $d_{\gamma,1} \sim \frac{m_{pl} \epsilon_{\text{FI}}}{e' |\phi|_{osc}}$ $\epsilon_{\rm FI} \sim 10^{-12}$ $m_0 \sim 10^{-28} {\rm eV}$ $|\phi|_{osc} \sim 10^{16} \text{GeV}$

 $e' \sim 1 \rightarrow d_{\gamma,1} \sim 10^{-10}$

Quadratic Coupling

 $d_{\gamma,2} \sim \left(\frac{m_{pl}\epsilon_{FI}}{e'|\phi|}\right)$

 $\epsilon_{FI} \sim 10^{-12}$ $m_0 \sim 10^{-28} \text{eV}$ $|\phi|_{osc} \sim 10^{16} \text{GeV}$

Conclusion:

- DPDM and photon are connected by the kinetic mixing.
- ϕ dependent kinetic mixing relieves $\epsilon_{\rm FI}$ tension.
- The ultralight scalar to photon coupling modifies $\alpha_{\rm em}$.
- Signals and constraints from varies experiments/observations.

Suppress UV Freeze-in

We want

Suppress UV Freeze-in

NR Ultralight Boson:

 $m_{\phi} \sim 10^{-20} \mathrm{eV}$

 $\left|\phi\right|_{osc} = \sqrt{2\rho_{\phi}/m_{\phi}}$

$|\phi|_{osc} \sim 10^{15} \text{GeV}$

Ultralight ϕ suppresses UV FI

1. Schrödinger Equation

We begin with the traditional time domain method which was first developed by Landau and Zener [75, 76], and later used within the context of neutrino physics [77, 78] (see also the discussion in Ref. [18]). Working in the ultrarelativistic and collisionless limit, the dispersion relation of Eq. (2) corresponds to (up to an arbitrary phase) the following Schrödinger-type time-dependent equation

$$i\partial_t \begin{pmatrix} A_T \\ A'_T \end{pmatrix} \simeq \begin{pmatrix} \xi & \eta \\ \eta & -\xi \end{pmatrix} \begin{pmatrix} A_T \\ A'_T \end{pmatrix} ,$$
 (B1)

where $\xi = (M_{\text{eff}} - M'_{\text{eff}})/4\omega$ and $\eta = \epsilon M_{\text{eff}}/2\omega$ (we remind the reader that we have shortened our notation such that only the real part is included in M_{eff}^2 and M'_{eff}^2). Now, expanding A_T and A'_T in terms of the instantaneous basis of the $\mathcal{O}(\epsilon^0)$ Hamiltonian, we have

$$\boldsymbol{A}_{T} = c_{\gamma}(t) \, e^{-i \int_{-\infty}^{t} dt' \, \xi(t')} \,, \, \, \boldsymbol{A}_{T}' = c_{A'}(t) \, e^{i \int_{-\infty}^{t} dt' \, \xi(t')} \,. \tag{B2}$$

To determine the time-dependent coefficients c_{γ} and $c_{A^{\prime}}$ following differential equations,

$$i\partial_t c_{\gamma} = \eta \, c_{A'} \, e^{2i \int_{-\infty}^t dt' \xi(t')} \,, \, i\partial_t c_{A'} = \eta \, c_{\gamma} \, e^{-2i \int_{-\infty}^t dt' \xi(t')} \,. \tag{B3}$$

Since Eq. (B3) is symmetric under $c_{\gamma} \leftrightarrow c_{A'}$, it follows that conversion probability satisfies $P_{\gamma \to A'} = P_{A' \to \gamma}$. Assuming an initially negligible dark photon density, $\gamma \to A'$ dominates over the inverse process, corresponding to the initial condition $c_{\gamma}(-\infty) = 1$, $c_{A'}(-\infty) = 0$. For $\epsilon \ll 1$, $c_{\gamma}(t) \simeq 1$ and the $\gamma \to A'$ transition probability at $t = \infty$ (to leading order in ϵ) is approximately

$$P_{\gamma \to A'} \simeq |c_{A'}(\infty)|^2 \simeq \left| \eta \int_{-\infty}^{+\infty} dt' e^{-2i \int_{-\infty}^{t'} dt'' \xi(t'')} \right|^2$$
 (B4)

This integral can be evaluated using the saddle point approximation, which gives

$$P_{\gamma \to A'} \simeq \sum_{t_{\rm res}} \pi \eta^2 \left| \frac{d\xi}{dt} \right|^{-1} \bigg|_{t_{\rm res}} , \qquad (B5)$$

To determine the time-dependent coefficients c_{γ} and $c_{A'}$, we substitute Eq. (B2) into Eq. (B1), which yields the

This integral can be evaluated using the saddle point approximation, which gives

$$P_{\gamma \to A'} \simeq \sum_{t_{\rm res}} \pi \eta^2 \left| \frac{d\xi}{dt} \right|^{-1} \Big|_{t_{\rm res}} , \qquad (B5)$$

where the sum includes all times t_{res} at which $\xi(t_{\text{res}}) = 0$. Using the definitions of η and ξ , we find that Eq. (B5) gives $P_{\gamma \to A'}$ agrees with $-\Delta f_{\gamma}/f_{\gamma}$, where $\Delta f_{\gamma}/f_{\gamma}$ is given by integrating Eq. (8) over time. In order to calculate $P_{\gamma \to A'}$ to the all orders in ϵ , we utilize the Dykhne-Davis-Pechukas (DDP) method [79–83]. This gives

$$P_{\gamma \to A'} = 1 - \prod_{t_{\rm res}} e^{-\frac{1}{\omega} \operatorname{Im} \int_0^{t_c} dt \ (\Pi_+ - \Pi_-)} , \qquad (B6)$$

where

 $\Pi_{\pm} = \frac{M_{\rm eff}^2 + M_{\rm eff}'^2}{2} \pm \frac{1}{2} \sqrt{\left(\frac{d(x_{\rm eff})^2}{2} + \frac{1}{2} + \frac{1}{2}\right)} \left(\frac{d(x_{\rm eff})^2}{2} + \frac{1}{2} +$

and

 $t_c = 2i \epsilon M_{\text{eff}}^2 \left| \frac{d(1)}{d(1)} \right|$

Performing the time integral in Eq. (B6) from t = 0 to $t = t_c$, we find that the transition probability to all orders in

$$\frac{(M_{\rm eff}^2 - M_{\rm eff}'^2)}{dt}\Big|_{t_{\rm res}}\Big)^2 t^2 + 4\epsilon^2 M_{\rm eff}^4 \tag{B7}$$

$$\frac{M_{\rm eff}^2 - M_{\rm eff}'^2)}{dt}\Big|^{-1}\Big|_{t_{\rm res}} \tag{B8}$$

FIG. 6. The time evolution (in terms of the dimensionless time variable \tilde{t}) of the transverse field components A_T and A'_T , as described by the two-level system of Eq. (B1). Numerical solutions of Eq. (B1) are shown as red and blue lines, for the SM-like and dark-like photon states, respectively. Along the dashed gray lines, we show the late-time semi-analytic estimate, provided by Eq. (B9). Resonant enhancement occurs at $\tilde{t} = 0$, corresponding to $M_{\text{eff}} \simeq M'_{\text{eff}}$ near the vertical gray line.

 ϵ is

$$P_{\gamma \to A'} \simeq 1 - \exp\left(\sum_{t_{\rm res}} \pi \eta^2 \left| \frac{d\xi}{dt} \right|^{-1} \right|_{t_{\rm res}} \right) . \tag{B9}$$

The probability for $\gamma \to \gamma$ is given by $P_{\gamma \to \gamma} = 1 - P_{\gamma \to A'}$.

In Fig. 6, we compare the numerical solution of Eq. (B1) $(|c_{\gamma}|^2)$ in red and $|c_{A'}|^2$ in blue) to the semi-analytic approximation of Eq. (B9) (dashed gray lines). In the figure, we have defined the dimensionless quantities $t \equiv$ $t |d\xi(t_{\rm res})/dt|^{-1/2}$ and $\tilde{\eta} \equiv \eta |d\xi(t_{\rm res})/dt|^{-1/2}$. The resonantly enhanced transitions occurs when $M_{\rm eff}^2 \simeq M_{\rm eff}^{\prime 2}$, denoted as $\tilde{t} \simeq 0$ near the vertical gray line. Before this time, $|c_{\gamma}| \simeq 1$ and $|c_{A'}| \simeq 0$. Near the resonance, photons convert to the dark photons. After the resonance, c_{γ} and $c_{A'}$ oscillate around the asymptotic value given in Eq. (B9).

Scalar-Photon Coupling: Quadratic

 $\Delta m_{\phi} \simeq 10^{-11} \text{eV} \left(\frac{\epsilon_{\text{FI}}}{10^{-12}}\right) \left(\frac{M}{10\text{TeV}}\right)^2 \left(\frac{10^{17}\text{GeV}}{|\phi|_{osc}}\right) \left(\frac{1}{e'}\right)$

 $\gg 10^{-20} \mathrm{eV}$

 $(\Psi, \Psi', A')_k \rightarrow (\Psi, \Psi', A')_{k+1}$ $\mathbb{Z}_{\mathcal{N}}$ $\Phi \to \Phi \exp\left(i\frac{2\pi}{N}\right)$

Z_N as discretized U(1)

 $\mathscr{L}_{Z_N} \sim \frac{\Phi^N}{M^{N-4}} + h.c.$

Backup

Suppress UV Freeze-in

We want

Suppress UV Freeze-in

NR Ultralight Boson:

 $m_{\phi} \sim 10^{-20} eV$

 $\left|\phi\right|_{osc} = \sqrt{2\rho_{\phi}/m_{\phi}}$

$\left|\phi\right|_{osc} \sim 10^{15} GeV$

Ultralight ϕ suppresses UV FI

Dark photon dark matter freeze-in through the kinetic mixing

Dark photon freeze-in from the early Universe

 $m_{\gamma}^{2} = \begin{cases} \omega_{p}^{2} = 4\pi\alpha(n_{e}/m_{e}), & (T \ll m_{e}) \\ \frac{3}{2}\omega_{p}^{2} = (2/3)\alpha\pi T^{2}, & (T \gg m_{e}) \end{cases}$

$$= m_{\gamma'} \sqrt{\frac{3}{2\pi\alpha}} \qquad e^- e^+ \to \gamma'$$

coalescence: $m_{\gamma'} > 2m_e$

 $e^+e^- \rightarrow \gamma \gamma'$ pair annihilation

Measurement of the time-varying fine-structure constant

Atomic Clock $f_{\rm A} \propto \left(rac{\mu_{\rm A}}{\mu_{ m b}} ight)^{\zeta_{\rm A}} (lpha)^{\xi_{\rm A}+2} \qquad rac{\delta \left(f_{\rm A}/f_{ m B} ight)}{f_{ m A}/f_{ m B}} \simeq \left[\zeta_{ m A} \left(d_{m_e} - d_g + M_{ m A} d_{\hat{m}}\right) + \Delta \xi_{ m AB} d_e ight] \kappa \phi(t),$ **Species** $^{171}Yb^{+}$ [22] $4f^{14}$ $^{27}Al^{+}$ 23 $3s^2$ $^{88}Sr^{+}$ [24] $5s^2$ 171 Yb [12] $6s^2$ ^{87}Sr [13] $5s^2$

A. Arvanitaki, J. Huang, and K. Van Tilburg, **PRD**, 2015

Transition	ξ_A
${}^{2}_{4}6s {}^{2}S_{1} \xrightarrow{2} 4f^{13}6s^{2} {}^{2}F_{7}$	-5.30
$\overline{2}$ $\overline{2}$ $\overline{2}$ ${}^{1}S_{0} \leftrightarrow 3s3p {}^{3}P_{0}$	0.008
$S_{\frac{1}{2}} \leftrightarrow 4d^2 D_{\frac{5}{2}}$	0.43
${}^{1}S_{0} \leftrightarrow 6s6p {}^{3}P_{0}$	0.31
$^1\mathrm{S}_0 \leftrightarrow 5\mathrm{s}\mathrm{5p}{}^3\mathrm{P}_0$	0.06

Celestial Constraints on $\alpha(t)$ BBN $X_n^{\text{eq}} =$ $1 + e^{m_{np}/T}$ $Y_p \approx 2X_{n,\text{BBN}}$ $m_{np} = m_n - m_p$ $\Delta m_{np} \propto \frac{\Lambda_{\rm QCD}}{M_{\rm pl}} d_{\gamma}^{(n)} \phi$

Y. V. Stadnik, V. V. Flambaum PRL 2015

L. Hamaide, H. Muller, and D. J. E. Marsh, PRD 2022

Frequency ratio measurements at 18-digit accuracy using an optical clock network

Al⁺/Yb ratio

Boulder Atomic Clock Optical Network (BACON) Collaboration*

 $v_{\rm Al^+}/v_{\rm Yb} = 2.162887127516663703(13),$

 $v_{\rm Al^+}/v_{\rm Sr} = 2.611701431781463025(21),$

 $v_{\rm yb}/v_{\rm Sr} = 1.2075070393433378482(82).$

564 Nature Vol 591 25 March 2021

Celestial Constraints on $\alpha(t)$

BBN

 $m_{np} = m_n - m_p$ $\Delta m_{np} \propto \frac{\Lambda_{\rm QCD}}{M_{\rm pl}} d_{\gamma}^{(n)} \phi$

Change He abundance

Y. V. Stadnik, V. V. Flambaum PRL 2015

L. Hamaide, H. Muller, and D. J. E. Marsh, PRD 2022

>

Celestial and Terrestrial Constraints

Cold-atom Interferometer

Laser: Excite and de-excite the atoms. Generate a quantum superposition of two paths and then recombining

> **Measurement:** accumulated phase between the two paths

Varying α_{em} modifies transition frequency

$$\frac{\Delta\omega_A}{\omega_A} \propto \sqrt{\rho_\phi} \xi_A d_e^{(1)}$$

Signal of ultralight scalar:

$$\frac{\Delta\omega_A}{m_{\phi}} \left| \sin\left[\frac{m_{\phi}nL}{2}\right] \sin\left[\frac{m_{\phi}(T-(n-1)L)}{2}\right] \sin\left[\frac{m_{\phi}}{2}\right] \right|$$

 Ψ_3

 Ψ_3'

Quantum Correction $V_{tot}(\phi) = \sum_{i=0}^{N-1} V\left(\phi + \frac{2\pi i}{N}\right)$

 $\Delta m_{\phi}^2 \propto r^{N-2}$

 $r \sim 10^{-10} \left(\frac{\epsilon_{FI}}{10^{-12}} \right) \left(\frac{1}{e'} \right)$

