

RAY TRACING FOR BABYIAXO WITH REST

Johanna von Oy

Axion++ workshop

26.09.23

BABYIAXO AT DESY

- BabyIAXO will be built at DESY
- Until then: simmulations through ray tracing

- Adjust the axion model to compare the simulation with future results
- Adjust the position of the telescope components to understand their acceptance range

Rare Event Searches Toolkit software

- Mainly written in C++ and fully integrated with ROOT I/O interface
- Contains other libraries for data processing and analysis

BABYIAXO – SOLAR AXIONS

SOLAR AXIONS – RADIAL DISTRIBUTION

SOLAR AXIONS – RADIAL DISTRIBUTION

Radial distribution of ABC axion flux in sun

SOLAR AXION – KSVZ ENERGY DISTRIBUTION

SOLAR AXION – DFSZ ENERGY DISTRIBUTION

GENERATING AXIONS FROM THE SUN

- 1. Integrate over the sun for each radius
- Get random radius and energy for each axion biased by the calculated flux

BABYIAXO – THE MAGNET

MAGNETIC FIELD

MAGNETIC FIELD IMPLEMENTATION

- 1. Get magnetic field on gridvector intersection points
- 2. Integrate magnetic field over vector
- 3. Photon production probability: $P_{a \to \gamma} = \frac{1}{4} (g_{a\gamma} BL)^2$

BABYIAXO – X-RAY OPTICS

X-RAY OPTICS

The XMM optics built for the XMM-Newton space mission

The custom BabyIAXO optics consisting of an inner optics and an outer optics

IAXO collaboration 2020, arXiv:2010.12076

A Wolter I optic principle from the side

- 1. Find interaction point
- Turn X-ray vector in regards to the respective normal vector

A Wolter I optic principle from the side

- 1. Find interaction point
- Turn X-ray vector in regards to the respective normal vector

Wolter I: Parabolic mirror function

$$R^{2}(z) =$$

R3² - R3 · 2 · tan(α) · z

$$R^{2}(z) =$$

$$R3^{2} - R3 \cdot 2 \cdot \tan(3\alpha) \cdot \left(z + \frac{z^{2}}{f + R3 \cdot \cot(2\alpha)}\right)$$

Wolter I: Hyperbolic mirror function

A Wolter I optic principle from the side

- 1. Find interaction point
- Turn X-ray vector in regards to the respective normal vector

Wolter I: Parabolic mirror function

$$R^{2}(z) =$$

R3² - R3 · 2 · tan(α) · z

$$R^{2}(z) =$$

$$R3^{2} - R3 \cdot 2 \cdot \tan(3\alpha) \cdot \left(z + \frac{z^{2}}{f + R3 \cdot \cot(2\alpha)}\right)$$

Wolter I: Hyperbolic mirror function

DETECTOR WINDOWS AND MASKS

Mylar window

A vacuum tight Si3N4 window

- 1. Get energy dependent transmission probability of different materials
- 2. Create a geometric mask

The spider structure in front of the XMM optics

BABYIAXO – PERFECT ALIGNMENT

RESULTS PERFECT ALIGNMENT

- Run with 100 000 events
- Solar flux: Primakoff
- Vacuum stage
- Optics: XMM optics
- Results here done with REST v2.3.15

ACCEPTANCE STUDY

1. Internal:

- Individual rotation of magnet and optics around their own center
- Magnet, optics and detector displacement
- 2. External:
 - Misalignment effects due to gravity

Internal magnet rotation downwards

Relative Efficiency Comparison

INTERNAL ROTATION X-RAY OPTICS

Relative Efficiency Comparison

RESULTS INTERNAL

Individual acceptance magnet					
Rotation $\alpha_{\text{pitch}}(99\%)$ [°] Rotation $\alpha_{\text{yaw}}(99\%)$ [°					
-0.19	-0.13				
Deviation $y(99\%)$ [mm]	Deviation $x(99\%)$ [mm]				
-24.76	-17.77				

Magnet

RESULTS INTERNAL

Individual acceptance magnet					
Rotation $\alpha_{\text{pitch}}(99\%)$ [°]	Rotation $\alpha_{yaw}(99\%)$ [°]				
-0.19 -0.13					
Deviation $y(99\%)$ [mm]	Deviation $x(99\%)$ [mm]				
-24.76	-17.77				

Individual acceptance XMM optics					
Rotation $\alpha_{\text{pitch}}(99\%)$ [°]	Rotation $\alpha_{\text{yaw}}(99\%)$ [°]				
-0.021	-0.017				
Deviation $y(99\%)$ [mm]	Deviation $x(99\%)$ [mm]				
-1.09	-1.02				

Magnet

X-ray optics

RESULTS INTERNAL

Individual acceptance magnet					
Rotation $\alpha_{\text{pitch}}(99\%)$ [°] Rotation $\alpha_{\text{yaw}}(99\%)$ [°]					
-0.19	-0.13				
Deviation $y(99\%)$ [mm]	Deviation $x(99\%)$ [mm]				
-24.76	-17.77				

Individual acceptance XMM optics					
Rotation $\alpha_{\text{pitch}}(99\%)$ [°]	Rotation $\alpha_{yaw}(99\%)$ [°]				
-0.021	-0.017				
Deviation $y(99\%)$ [mm]	Deviation $x(99\%)$ [mm]				
-1.09	-1.02				

Magnet

X-ray optics

Individual acceptance detector					
y(99%) GridPix window [mm] $x(99%)$ GridPix window [mm]					
-1.04	-1.06				
y(99%) Micromegas window [mm]	x(99%) Micromegas window [mm]				
-1.22	-1.25				

Detector

POSSIBLE GRAVITATIONAL EFFECTS

Support Frame Deformations (mm)						
	Magnet side					
\mathbf{Tilt}	$\mathrm{Ansys}^{a)}$	$Ansys^{b)}$	Comsol	RStab	Average	Std Dev
0°	4.5	4.1	3.9	4.9	4.4	0.4
25°	4.6	3.9	3.8	4.9	4.3	0.5
-25°	3.5	3.6	3.3	3.8	3.5	0.2
$\Delta(25-0)$	0.1	-0.2	-0.1	0.0	-0.1	0.1
$\Delta(-25-0)$	-1.0	-0.5	-0.6	-1.1	-0.8	0.3
	Detector side					
Tilt	$\mathrm{Ansys}^{a)}$	$Ansys^{b)}$	Comsol	RStab	Average	Std Dev
0°	6.2	6.0	5.9	4.8	5.8	0.1
25°	4.4	5.3	4.3	3.0	4.3	0.4
-25°	6.4	5.6	6.1	5.3	5.9	0.4
$\Delta(25-0)$	-1.8	-0.7	-1.6	-1.8	-1.5	0.5
$\Delta(-25-0)$	0.2	-0.4	0.2	0.5	0.1	0.3

The possible deformation of the setup due to gravity

Relative Efficiency Comparison

Optics rotation around the systems center

Optics rotation around system center by 0.12°

DEFORMATION DUE TO GRAVITY

DEFORMATION DUE TO GRAVITY

DEFORMATION DUE TO GRAVITY

DEFORMATION DUE TO GRAVITY WITH DETECTOR CORRECTION

DEFORMATION DUE TO GRAVITY – DETECTOR CORRECTION

Detector correction from the original position Rotation angle [°] 0 -0.08 -0.06 -0.02 -0.14 -0.12 -0.1 -0.04 -1 Deviation focal spot [mm] -2 -3 -4 -5 -6 -7

Detector correction from the support structure

Magnet side							
	Magnet	Magnet and optics	All	Detector corrected			
$\alpha(99\%)$ [°]	-0.19	-0.016	-0.01	-0.025			
$\Delta y(99\%)$ [mm]	-27.25	-2.23	-1.39	-3.58			
$\alpha(95\%)$ [°]	X	-0.035	-0.018	-0.049			
$\Delta y(95\%) \text{ [mm]}$	X	-4.94	-2.58	-7.00			

Detector side							
	XMM optics	Magnet and optics	All	Detector corrected			
$\alpha(99\%)$ [°]	-0.0175	-0.016	-0.01	-0.025			
$\Delta y(99\%) \text{ [mm]}$	-3.22	-2.87	-1.8	-4.61			
$\alpha(95\%)$ [°]	X	-0.035	-0.018	-0.049			
$\Delta y(95\%) \text{ [mm]}$	X	-6.38	-3.33	-9.03			

RESULTS DEFORMATION DUE TO GRAVITY

Support Fran	ne Deformation	s (mm)					
	Magnet side						[mm]
\mathbf{Tilt}	$\mathrm{Ansys}^{a)}$	$Ansys^{b)}$	Comsol	RStab	Average	Std Dev	Detector corrected
0°	4.5	4.1	3.9	4.9	4.4	0.4	-0.025
25°	4.6	3.9	3.8	4.9	4.3	0.5	-3.58
-25°	3.5	3.6	3.3	3.8	3.5	0.2	-0.049
$\Delta(25-0)$	0.1	-0.2	-0.1	0.0	-0.1	0.1	-7.00
$\Delta(-25-0)$	-1.0	-0.5	-0.6	-1.1	-0.8	0.3	
	Detector side						[mm]
Tilt	$Ansys^{a)}$	$Ansys^{b)}$	Comsol	\mathbf{RStab}	Average	Std Dev	Detector corrected
0°	6.2	6.0	5.9	4.8	5.8	0.1	
25°	4.4	5.3	4.3	3.0	4.3	0.4	-0.025
-25°	6.4	5.6	6.1	5.3	5.9	0.4	-4.61
$\Delta(25-0)$	-1.8	-0.7	-1.6	-1.8	-1.5	0.5	3 -0.049
$\Delta(-25-0)$	0.2	-0.4	0.2	0.5	0.1	0.3	-9.03

REST RAYTRACER COLLABORATION

Solar axion flux implemented by: Sebastian Hoof Lennert Thormahlen Maurizio Gianotti

Solar flux: https://github.com/sebhoof /SolarAxionFlux

Magnetic field implemeted by: Kresimir Jakovcic Nikolay Bikovskiy

Ray tracer

https://github.com/rest-forphysics/axionlib X-ray optics implemented by: Javier Galán Johanna von Oy

> Detector windows and masks implemented by: Javier Galán Johanna von Oy

SUMMARY

BabyIAXO simulated by the REST ray tracer:

- Overview of acceptances of individual components: magnet, optics, detector
- Simulation of worst-case scenario due to gravitational effects
- Solution through detector movement

OVER ROTATION

System rotation downwards

UNIVERSITÄT BONN

RESULTS DEFORMATION DUE TO GRAVITY

Magnet side						
	Magnet	Magnet and optics	All	Detector corrected		
$\alpha(99\%)$ [°]	-0.19	-0.016	-0.01	-0.025		
$\Delta y(99\%)$ [mm]	-27.25	-2.23	-1.39	-3.58		
$\alpha(95\%)$ [°]	х	-0.035	-0.018	-0.049		
$\Delta y(95\%)$ [mm]	х	-4.94	-2.58	-7.00		

Detector side						
	XMM optics	Magnet and optics	All	Detector corrected		
$\alpha(99\%)$ [°]	-0.0175	-0.016	-0.01	-0.025		
$\Delta y(99\%)$ [mm]	-3.22	-2.87	-1.8	-4.61		
$\alpha(95\%)$ [°]	x	-0.035	-0.018	-0.049		
$\Delta y(95\%)$ [mm]	х	-6.38	-3.33	-9.03		

EFFICIENCY OF THE XMM AT 0.03 KEV

Geometrical Acceptance

- Off axis test with an EUV source at Centre Spatial de Liège (CSL) in 1998 (black line)
- Rotation of the XMM optics in the ray tracer at 0.03 keV (red dots)

HEW: EXPERIMENT VS SIMULATION

- HEW: Diameter of a circle that includes half of the signal information
- Experimental data from CSL and Panter in the 90s

IAXO VS. BABXIAXO

- 25m long magnet
- 8 bores with optics and detectors
- Peak magnetic field of 5.4 T

- 10m long magnet
- 2 bores with optics and detectors
- Peak magnetic field of 3.2 T

IAXO VS. BABYIAXO

IAXO collaboration 2020, arXiv:2010.12076

RESULTS PERFECT ALIGNMENT

- Run with 100 000 events
- Solar flux: Primakoff
- Vacuum stage
- Optics: XMM optics
- GridPix window
- Results here done with REST v2.3.15

