Searching for ultralight Axion/ALP dark matter signal in Parkes PTA polarization data

Tao Liu, Hoang Nhan Luu, Jing Ren, Shi Dai, Jing Shu, XX, Yue Zhao and PPTA (in preparation)

Speaker: Xiao Xue University of Hamburg & DESY, Hamburg, Germany. Sponsored by Quantum Universe. 27.09.2023, Axion++ 2023, LAPTh, Annecy, France

What is the nature of dark matter?

Begeman, Broeils and Sanders, 1991. Originally by Rubin, Ford and Thonnard 1980.

CMB temperature map, Planck 2018

The question: What is the nature of dark matter?

V a	eV	feV	pe\	V	neV	μeV		meV		
1027 1026 10	25 1024 1023	1022 1021 102	0 1019	1018 1017	1016 1015	1014 101] 3 1012 -	PQ Sc	ale [Ge	V] 8 1
µHz	mHz	Hz]	kHz	MHz		Frec GHz	luency	y = m/2 THz	2π
						~ 1		•	(2)	_1
.0 ⁴ yr centi	ary yr	week	hr	min	s	_ohere	nce t ns	مime ∼ ۱	(mv^2)	
					C	oheren	ice le	ngth /	$\sim (mv)$	-1
pc	mpc I	AU	R_{\odot}	R_{\oplus}	100 km	km		m I	cm	
Fuzzy DM			Bla ho spi	ck le ns						
Axion-phot	on	Birefring	ent ca	wity		Ca	vities	Dis	h/reflec	tor
	Earth			Lump	ped eleme	ent		Dielec	tric halos	6CO]
CMB				SRF up	conversi	on]	Plasma		
Axion-ferm	ion							Ma	gnons	
	Com	agnetomete	ers							
					NMR					
Axion-EDN	1									
Nucleon E	EDMs									
					NMR					
Dark photo	n					Ca	vities	Dis	h/reflec	to
	Earth			Lump	ped eleme	ent		Dielec	tric halos	coj
				SRF up	conversi	on]	Plasma		
Scalars		M	lechan	ical resona	ators					
	Atom inte	rferometry								
	A	tomic/nuclea	r clock	s						
Vectors	Torsion balance									
	Optical in	nterferometers	(Optomechan detectors	ical					
Atom	interferom	etry								
²¹ 10 ⁻²⁰ 10 ⁻¹⁹ 10	$0^{-18}10^{-17}10^{-18}$	¹⁶ 10 ⁻¹⁵ 10 ⁻¹⁴ 10 ⁻¹⁴ 10 ⁻¹⁵ Dar]	k m	$^{2}10^{-11}10^{-11}$	10-9 10- nass [[*] 10 ⁻⁷ 10 eV]	-6 10-5	10-4 10	- ³ 10 ⁻² 10)-1

Credit: AxionLimits, Ciaran O'Hare

Ultralight axion/ALP dark matter

Ultralight Dark Matter

m ≪ 1eV Bosonic, Iarge occupation number, stochastic, soliton core, substructures, long coherent time.

Periodic Signal $f = \frac{m}{10^{-21.88} \text{eV}} \text{yr}^{-1}$

Constraints: Lyman alpha forest

Axion/ALP

$$V = m^2 f_a^2 \left(1 - \cos(a/f_a) \right)$$

Self interaction

$$\mathscr{L} \supset g_{a\gamma} a \tilde{F}_{\mu\nu} F^{\mu\nu}$$

&with fermion Coupling with SM particles, loop level couplings

Polarized pulsar light

In radio astronomy the EM observation is described by the Stokes Parameters $\{I, Q, U, V\}$, with

$$Q^2 + U^2 + V^2 = I^2.$$

intensity of the linear polarized light.

$$L = \sqrt{Q^2 + U^2}$$

The Polarization Angle (PA).

$$PA \equiv \frac{1}{2}\arctan\frac{U}{Q}$$

 $(2PA = \phi)$

Polarization data from millisecond pulsars

Ultralight DM as stochastic background

The axion/ALP DM field follows multivariate normal(Gaussian) distribution (Foster, Kahn, Nguyen, Rodd, Safdi, 20' "Dark Matter Interferometry")

 $P\left(a(t_1, \vec{x}_1), a(t_2)\right)$

The axion/ALP DM induced PA change also follows normal distribution (Liu, Lou, Ren, "Pulsar polarization arrays" 2111.10615)

$$P\left(\Delta PA_1, \Delta PA_2, \dots, \Delta PA_n\right) = \mathcal{N}(\vec{0}, C)$$

$$C_{p,n;q,m} = \frac{g_{a\gamma}^2}{m^2} [\rho_e \cos(m(t_{p,n} - t_{q,m})) + \sqrt{\rho_p \rho_q} \operatorname{sinc}(y_{pq}) \cos(m(t_{pq})) + \sqrt{\rho_e \rho_p} \operatorname{sinc}(y_{ep}) \cos(m(t_{pq})) + \sqrt{\rho_e \rho_q} \operatorname{sinc}(y_{eq}) + \sqrt{\rho_e \rho_q} + \sqrt{\rho_e \rho_q}$$

$$(t_2, \vec{x}_2), \dots, a(t_n, \vec{x}_n)) = \mathcal{N}(\vec{0}, C')$$

Statistical framework $\ln L = -\frac{1}{2}(\mathbf{PA} - \mathbf{PA}_{det})^{2}$ $\boldsymbol{C} = \boldsymbol{C}\left(m, \frac{g_{a\gamma}\sqrt{\rho_e}}{m}, L_p^*, \sigma_p^{\text{add}}, A_l^*\right)$

 $L_p^* = L_p / L_p^{\text{est}}$: fractional pulsar distance, prior taken from ATNF pulsar catalogue. σ_p^{add} : Additional white noise. $A_n^{\text{red}}(m)$: Additional red noise. **PA**_{intrinsic}: Intrinsic PA. ΔPA_{iono} : ionosphere Faraday rotation.

Likelihood function:

$$^{T}\boldsymbol{C}^{-1}(\mathbf{PA} - \mathbf{PA}_{det}) - \frac{1}{2}\ln|2\pi\boldsymbol{C}|$$

Parameterize C and PA_{det} :

$$\binom{\text{red}}{p}(m)$$
; $\mathbf{PA}_{\text{det}} = \mathbf{PA}_{\text{intrinsic}} + \Delta \mathbf{PA}_{\text{iono}}$

Undergoing tests

- 3.1GHz to 1.4GHz & 3.1GHz.
- 2. Cross correlation analysis (when we have more pulsars!)
- 3. Generate ionosphere Faraday rotation to see if it has generation with the axion/ALP DM.
- 4. Ionosphere corrections.
 - High frequency only analyses + multi-frequency cross examination. Faraday rotation subtraction from Ultra-wide-band data. Independent ionosphere subtraction with IONFR.

1. More pulsars: From 4 pulsars to all 32 pulsars. Two frequencies: from

EHT observation of black holes

✓ Curved space effect ✓ Extended emission washout effect ✓ Plasma effect ✓ Analytic accretion flow (Yuan, Quataert, Narayan 03'; Pu & Broderick. APJ 18') ✓ Covariant Radiative transfer tool IPOLE (Mościbrodzka & Gammie, 18') $\Delta PA = A(\rho, \varphi) \sin \left| \omega t + \varphi + \delta(\rho, \varphi) \right|$

