An ALP Portal to GeV-Scale Dark Matter

Giovanni Armando

Università di Pisa & INFN

Axions++

28 September 2023

Collaborators: P. Panci, J. Weiss, R. Ziegler

Why axions at the MeV scale?

• Strong-CP problem?

• Interesting region of the parameter space

•
$$(g - 2)_{\mu}$$

• ALP mediators to Dark Sectors have sparked recent interest [Dror et al, '23; Fitzpatrick et al, '23] • Strong-CP problem

• Interesting region of the parameter space

•
$$(g - 2)_{\mu}$$

• ALP mediators to Dark Sectors have sparked recent interest [Dror et al, '23; Fitzpatrick et al, '23]

Model

• Write down a general Lagrangian for an axion-like particle *a* that couples to Standard Model (SM) fermions ψ

$$\mathcal{L} \supset \frac{\partial_{\mu} a}{2f_a} c_{\psi} \bar{\psi} \gamma^{\mu} \gamma_5 \psi \quad \longleftrightarrow \quad \mathcal{L} \supset -iag_{\psi} \bar{\psi} \gamma_5 \psi, \quad g_{\psi} = \frac{c_{\psi} m_{\psi}}{f_a}$$

- $m_a \sim \text{MeV}$ implies constraints from beam dump experiments
- Constrain couplings to leptons further using $(g-2)_e$ and $(g-2)_\mu$

$$\Delta a_e = 34(16) imes 10^{-14}$$
 $\Delta a_\mu^{
m BMW} = 105(61) imes 10^{-11}$

Model	m_a [MeV]	$g_{e}/10^{-5}$	$g_\mu/10^{-4}$	$g_{ au}$	$BR_{\gamma\gamma}$ [%]	$\tau_{a}[ps]$
а	20	0.20	0.29	2.6	99	1.4
Ь	15	1.0	1.7	0.50	11	9.8
с	95	0.30	0.37	2.4	100	0.01
d	95	2.0	3.5	0.36	39	0.26

Model

QCD Axion

- QCD axion at the MeV scale?
- Previously considered realisable with very stringent constraints [Alves and Weiner, '17; Alves, '20; Liu et al, '20]
- Recently excluded by NA62 looking for $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ [Hostert and Pospelov, '20; NA62 Collaboration, '23]

• Let the ALP couple also to a DM fermion χ

$$\mathcal{L} \supset \sum_{i=\chi, e, \mu, au} -i a g_i ar{\psi}_i \gamma_5 \psi_i - m_\chi ar{\chi} \chi$$

- Reproduce relic abundance through thermal freeze-out
- Annihilation channels: $\bar{\chi}\chi \rightarrow \ell^+\ell^-$ s-wave $\bar{\chi}\chi \rightarrow \gamma \gamma$ s-wave $\bar{\chi}\chi \rightarrow a a$ p-wave
- Couplings to leptons and photons (through loops of leptons) yield bounds from CMB (e^{\pm} , μ^{\pm} , γ) and X-ray searches (τ^{\pm})

Model	m_a [MeV]	$g_{e}/10^{-5}$	$g_\mu/10^{-4}$	$g_{ au}$
а	20	0.20	0.29	2.6
с	95	0.30	0.37	2.4

Model	m_a [MeV]	$g_e/10^{-5}$	$g_\mu/10^{-4}$	$g_{ au}$
b	15	1.0	1.7	0.50
d	95	2.0	3.5	0.36

Conclusion

- An ALP with $m_a \sim \text{MeV}$ has connections with different branches of particle physics
- Constraints to couplings to SM leptons from beam dump experiments and $(g-2)_{e/\mu}$
- \bullet Couple ALP to DM fermion \rightarrow reproduce right relic abundance through thermal freeze-out
- Constraints from CMB and X-ray searches
- Sweet spot for $m_\chi \sim \mathcal{O}(0.1-1) {
 m GeV}$ and $g_\chi \sim 10^{-2}-10^{-1}$