Axions++ 2023

New solar X-ray constraints on keV ALPs and Kaluza-Klein axions

Mar Bastero-Gil, **Cyprien Beaufort**, Tiffany Luce, Daniel Santos - 27th of September 2023 -

Presentation based on arXiv 2107.13337 and 2303.06968

PART 1: Trapped axions

PART 2: Solar constraints on standard Axion-Like Particles (ALPs)

PART 3: Solar constraints on Kaluza-Klein axions (= higher-dimensional axions)

Trapped axions

Trapped axions – Axions in the keV-range

C. O'Hare's github

We study axions with masses of order $m \in [3, 40 \text{ keV}] \Longrightarrow$ astrophysical constraints

- We assume that the ALPs do not account for the entire dark matter density \Longrightarrow releases the constraints
- The Kaluza-Klein axions can escape the astrophysical constraints \Longrightarrow viable dark matter candidate

Trapped axions - Axion production in the Sun (1/3)

The Sun can produce axions with masses up to few tens of keV

Hadronic axions Parametrized by $g_{a\gamma\gamma}$

Bremsstrahlung

Compton

Non-hadronic axions Parametrized by g_{ae}

Differential axion fluxes at Earth for $g_{a\gamma\gamma} = 10^{12} \text{ GeV}^{-1}$.

 \implies The axion production via the photon coalescence dominates over the Primakoff production for low momenta

Trapped axions - Axion production in the Sun (3/3)

The Sun can produce axions with masses up to few tens of keV

m Photon coalescence Primakoff Dominant processes producing trapped axions ~~~~~ Bremsstrahlung Compton

Hadronic axions Parametrized by $g_{a\gamma\gamma}$

Non-hadronic axions Parametrized by g_{ae}

When $v_a < v_{esc.}^{Sun}$, the axion gets gravitationnally bounded to the Sun \iff Trapped axion

Accumulate over cosmic times!

Increase the detection event rates on Earth by more than 2 orders of magnitude with respect to the direct axion flux.

Example of the orbit of a trapped axion

Trapped axions – Solar X-ray constraint

A trapped axion can decay into two photons with identical energy of $E_{\gamma} = m_a/2$.

Solar X-ray constraint:

- The decays of trapped axions contribute to the observed solar luminosity
- The axion-induced photon flux should not exceed the measured solar flux

 \implies We set limits on keV axions by comparing our predictions to the solar X-ray data collected by SphinX with $E_{\gamma} \in [1.5, 6 \text{ keV}]$ and by NuSTAR with $E_{\gamma} \in [3, 20 \text{ keV}]$

 \implies This method does not rely on any assumption about the local dark matter density

Solar constraints on standard ALPs

ALPs - The two frameworks

Two frameworks have been developed independently and simultaneously

lead to similar results

Two frameworks have been developed independently and simultaneously

The coalescence of two photons is the dominant process for producing trapped axions from the $g_{a\gamma\gamma}$ coupling. We added this mechanism that was omitted in DeRocco et al.'s work.

 \implies Improves the constraints by one order of magnitude

The trapped axions frequently cross the Sun in their orbits. For non-hadronic axions, meaning for $g_{ae} \neq 0$, the axions can produce a Compton scattering with the electrons in the core of the Sun and be absorbed.

 \implies We derived the probability of such an absorption, both analytically and by means of a MC simulation.

 \implies Out of the transitional region,

the solar X-ray constraints on ALPs are exclusively governed by $g_{a\gamma\gamma}$.

Solar constraints on Kaluza-Klein axions

LARGE EXTRA SPATIAL DIMENSIONS:

- Introduce n extra spatial dimensions compactified with a radius $R \lesssim 10 \, \mu {\rm m}$
- The axion can propagate in the extra dimensions
- The SM fields are confined into the 4D brane

Why such a framework?

- Theoretically motivated to solve the hierarchy problem (among other features)
- Why not? ;) \longrightarrow extra spatial dimensions are experimentally allowed

Credit: T. Banchoff

AXION IN EXTRA DIMENSIONS:

• Large mode

• The ground

From our 4-dimensional world, the $(4+\delta)$ -axion is seen as an almost infinite superposition of state called a Kaluza-Klein (KK) tower

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} \xrightarrow{(4+\delta) \text{ axion seen}}_{\text{from 4D brane}} \xrightarrow{g_{a\gamma\gamma}} \left(\sum_{n} r_{n} a_{n}\right) F^{\mu\nu} \tilde{F}_{\mu\nu}$$
CONSEQUENCES:
$$\begin{array}{c} & & & \\ & & \\ \text{Large mode multiplicity} & & \\ & & \\ \text{Lifetimes comparable to the age of the Universe} & & \\ & & \\ \text{The ground state of the KK tower is the only state to obey the}_{\text{Peccei-Quinn mechanism}} \xrightarrow{\text{identified as the QCD axion}} \xrightarrow{g_{a\gamma\gamma}} \left(\sum_{n} r_{n} a_{n}\right) F^{\mu\nu} \tilde{F}_{\mu\nu}$$

 $m_0 = m_{PQ}$

 \mathbf{a}_0

The solar X-ray measurements set stringent limits on $g_{a\gamma\gamma}$ for every set of extra-dimensional parameters.

The decay of trapped KK axions into photons, which produces a continuous energy spectrum, could explain the non-thermal behavior of the solar X-rays.

KK axions – The detection of KK axions

DIRECT DARK MATTER DETECTORS :

Several direct DM detectors have searched for KK axions (XMASS, NEWS-G, DRIFT). Our model revision and **our new solar X-ray constraints reduce by 6 orders of magnitude the event rate in such detectors**, closing the window for detection...

Other strategies of detection:

Helioscopes, haloscopes, LSW experiments and detection through nuclear transitions are several strategies able to search for KK axions. In some case, the data collected for QCD axion searches can be re-analysed to search for KK axions, without modifying the design of the detector.

CAST limits on KK axions. R. Horvat et al., Phys. Rev. D 69, 2004

Conclusion

TAKE HOME MESSAGES:

- In the keV-range, the phenomenology of solar axion in governed by trapped axions
- The photon coalescence is an important process for the production of non-relativistic axions
- Extra-dimensional axions (KK axions) could explain the non-thermal behavior of the solar X-ray spectrum
- Some axion detectors could also search for KK axions

TAKE HOME MESSAGES:

- In the keV-range, the phenomenology of solar axion in governed by trapped axions
- The photon coalescence is an important process for the production of non-relativistic axions
- Extra-dimensional axions (KK axions) could explain the non-thermal behavior of the solar X-ray spectrum
- Some axion detectors could also search for KK axions

Thank you for your attention!