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Thermal OR non-thermal?

Different thermal histories of DM
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WIMPs. ..

WIMP paradigm: 6,,,(v/c) =1 pb = Q,,,=0.12

Electroweak mediators = Lee — Weinberg window
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Maybe lighter dark sectors?



Status of Light thermal DM 5”,//

Freeze-out scenario with light dark matter requires a light mediator to explain
the relic density, or dark matter is overproduced.

o Light DM below 10 GeV is excluded by CMB

if DM annihilation into SM is s-wave.

e The constraint is much weaker if other
partial waves are dominant in the
annihilation cross-section
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A velocity dependence is needed



The model ”,/‘
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Interactions
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Decay of the mediator
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we focus on

the Resonant annihilation region

Mediator is a little heavier than twice of DM mass
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Relic density —
10 &=
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DM SM
o Dark matter annihilates into SM particles through med
s-channel resonance from ¢ mediation.
DM SM

e Enhanced cross-section keeps the dark sector coupling down in order to match with the observed relic den-

sity
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Self-interactions
11 =

Why self-i ion?
y sell-interaction e Stronger self-scattering needed for (dwarf-sized) halos

A solution to small-scale structure problem
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SIDM via a resonance [XC, C. Garcia-Cely, H. Murayama, 1810.04709]
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Resonant self-interaction
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CMB puts a bound on electromagnetic energy injection into primordial plasma

An upper limit on fog(m,){oVv),  /m,

/ / Slayter et al. 2016

efficiency DM velocity
— at recombination epoch

Since vpyp K Vg # only sswave component contributes to annihilation

at recombination



e We estimate the efficiency fuff (m,) taking only leptonic final states into account

® PLANCK » Jeg(m) (ov), [Im, < 41X 10728 cm3/s/GeV at 95% C.L.

A4

Mediator mass above ~ 4 GeV is excluded



Parameter space
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How to probe this model ?77?



Collider searches
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the light mediator can be probed in the searches for
invisible decays of rare mesons
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o Current limits : Belle, BaBar, E949, NA62, and KOTO
at 90% C.L

o Future projections : Belle Il and KLEVER



Direct detection ”,//
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Indirect detection

Indirect detection can constrain DM annihilation into electromagnetically charged particles

For our analysis

v ~ 1073 ~ vpyu at present

epoch

DM annihilation cross-section at present epoch has the maximal
contribution from the higher partial waves



Cosmic ray observations

® DM annihilation into leptons contributes to cosmic ray flux

e Signal flux

2
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Limits available from Voyager I, being the only

cosmic ray detector
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located outside the heliosphere
Pom(7e) = 0.25 £ 0.11 GeV/cm? [Read et. al 2014]
Vo(re) = 300 km/s [Lacroix et. al 2020]

e Annihilation considered only into lepton pairs
e Grey area excluded by Voyager | at 90% C.L.

Several parameter sets survive within
" 250 MeV < m, <2 GeV
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gamma-ray flux from the dark matter annihilation at the galactic center
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e We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the
dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator parti-
cle in the s-channel.

e The model is compatible with self-interaction, relic density and CMB constraints in the dark matter mass
range of 10 MeV < my < 4 GeV.

e There are strong constraints from collider searches due to the extensive search for rare K-meson decays.
Moreover, future K-meson experiments can explore most of the parameter sets with mg < 100 MeV

o A lighter dark matter region, my, < 300MeV, is excluded by the indirect dark matter detection using
cosmic-ray and gamma-ray observations, for the signal strength is boosted by the s-channel resonance.

e Only the parameter sets with 300 MeV < m, < 2GeV avoid the severe constraints, although upcoming
experiments in the near future is expected to probe this region.
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SIDM

I1. SIDM halo model. Scattering between DM particles
is more prevalent in the halo center where the DM density is
largest. It is useful to divide the halo into two regions, sepa-
rated by a characteristic radius r; where the average scatter-
ing rate per particle times the halo age (#,.) is equal to unity.
Thus,

: (ov)
rate X time & ~—p(ry) tage = 1, (1)
m

where o is the scattering cross section, m is the DM parti-
cle mass, v is the relative velocity between DM particles and
{...) denotes ensemble averaging. Since we do not assume
o to be constant in velocity, we find it more convenient to
quote (gv)/m rather than o /m. We set tyee = 5 and 10 Gyr
for clusters and galaxies, respectively. Although Eq. (1)is a
dramatic simplification for time integration over the assembly
history of a halo, we show by comparing to numerical simu-
lations that it works remarkably well.

4
V2l pona(r) = = —5- G pons(r) + Poaryon(r)]
v

Phys. Rev. Lett. 116, 041302 (2016)
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FIG. 1: Self-interaction cross section measured from astrophysical
data, given as the velocity-weighted cross section per unit mass as
a function of mean collision velocity. Data includes dwarfs (red),
LSBs (blue) and clusters (green), as well as halos from SIDM
N-body simulations with o/m = 1 cm?/g (gray). Diagonal
lines are contours of constant ¢/m and the dashed curve is the
velocity-dependent cross section from our best-fit dark photon model



Diversity problem
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Diversity problem
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Another limit from CMB

ANCH'

e Adding new particles with mass close to the neutrino decoupling temperature Tp ~ 2 MeV to the dark
sector affects expansion rate of the Universe at the recombination epoch

e CMB set a lower limit on the light mediator not to alter the effective # of relativistic d.o.f (ANeg)

e Assuming the instantaneous neutrino decoupling and no heating of the neutrinos from electrons and

positrons
- 2n?
Neff23{1+W[SI(TDH‘%(TD)]} ) Si(TD):hi(TD)4_5Tgy
hi(Tp) = (15x)/(4n%) [[Z dy (4y* — DVyT—1/(e" — 1) x; = my/ T,

Neff - 2.99 + 0.17

PLANCK excludes mediator mass below 11 MeV at 95% C.L



Early Kinetic Decoupling

Small SM-mediator coupling reduces scattering rate between DM and SM particles in the thermal bath

Suppressed scattering rate causes DM to kinetically decouple much earlier than the standard freeze-out
case

Phase space distribution differs from standard WIMP scenario.

Drastic drop in relic density around resonance than standard case = smaller DM-SM coupling for EKD to
maintain right relic

(Oh%)kp | (OR%)
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4]

ms [GeV] Binder et. al, 2017



The uncertainty on the "the relativistic degrees of freedom” leads to 10% ambiguity in the relic abundance
when the freeze-out temperature is around the QCD phase transition

The relic abundance calculated by taking all relevant scattering processes into account is the same as the
one computed assuming no scattering between DM and SM particles at around 10 % level.

20 % of Qpnh? adopted as the standard deviation to take the ambiguities into account conservatively
We use DRAKE code to compute relic density with EKD

Relic abundance including EKD effect becomes ~ 10 times smaller than that without the effect, leading to
the favored mixing angle evaluated including the effect being ~ 6 times smaller than that without it.

For DM mass below 10 GeV, observed relic density fixes the mixing angle in the range

107% <sind <1073




The velocity is estimated to be

vpu = 2 X 107(Z,/1 eV)(1 GeV/m,)(10™4/x,)"?

T,=0235eV Xeg = Tralm,

In the early kinematical decoupling scenario, Ti; ~ O(Tfeeze-out)

Since vpy < Vg # only s-wave component contributes to annihilation
at recombination

But at freeze-out velocity is not so suppressed # so higher momenta also

contribute to relic density
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No robust way to calculate fragmentation
function for hadronic final states
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