

Axions and gravitational waves

Valerie Domcke CERN

Axions++ September 25 - 28, 2023

based in part on

2011.12414 Living Review on UHF GW searches,

2202.00695, 2306.03125, 2306.04496 w. Camilo Garcia-Cely, Sung Mook Lee and Nick Rodd

Axions as a source of GWs

Axions as a source of GWs

Synergies between axion and GW searches

- GW electrodynamics vs axion electrodynamics
- Searching for high-frequency GWs with axion haloscopes
- [Possible high-frequency GW sources]
- Photon regeneration experiments and cosmological detectors

GW electrodynamics

Classical electrodynamics + linearized GR, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\partial_{\nu}F^{\mu\nu} = j^{\mu}_{\text{eff}} = (-\nabla \cdot \mathbf{P}, \, \nabla \times \mathbf{M} + \partial_t \mathbf{P}) \\ \partial_{\nu}\tilde{F}^{\mu\nu} = 0$$

effective current effective polarization vector effective magnetization vector

with

$$P_{i} = -h_{ij}E_{j} + \frac{1}{2}hE_{i} + h_{00}E_{i} - \epsilon_{ijk}h_{0j}B_{k},$$

$$M_{i} = -h_{ij}B_{j} - \frac{1}{2}hB_{i} + h_{jj}B_{i} + \epsilon_{ijk}h_{0j}E_{k},$$

induced at linear order in h in presence of external E,B field

VD, Garcia-Cely, Rodd `22

Direct analogy with axion electrodynamics

$$\mathcal{L} \supset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B} \rightarrow \mathbf{P} = g_{a\gamma\gamma} a \mathbf{B}, \quad \mathbf{M} = g_{a\gamma\gamma} a \mathbf{E}$$
 McAllister et al `18
Tobar, McAllister, Gorvach

McAllister et al `18 Tobar, McAllister, Goryachev `19 Ouellet, Bogorad `19

effective source terms in Maxwell's equation due to GW

[a note on frames]

GR is invariant under coordinate transformations, but linearized GR is not

Transverse traceless (TT) gauge

- coordinates fixed by freely falling test masses
- GW takes very simple form $h_{0\mu} = 0, h_i^i = 0, \partial_j h^{ij} = 0$
- rigid body seems to 'oscillate' in presence of GW

Proper detector frame

- coordinates fixed by laboratory frame
- · GW takes a more involved form
- description of experimental setup and observables is straightforward

 $\begin{aligned} h_{00} &= \omega^2 F(\mathbf{k} \cdot \mathbf{r}) \, \mathbf{b} \cdot \mathbf{r}, \qquad b_j \equiv r_i h_{ij}^{\mathrm{TT}} \big|_{\mathbf{r}=0}, \\ h_{0i} &= \frac{1}{2} \omega^2 \left[F(\mathbf{k} \cdot \mathbf{r}) - i F'(\mathbf{k} \cdot \mathbf{r}) \right] \left(\hat{\mathbf{k}} \cdot \mathbf{r} \, b_i - \mathbf{b} \cdot \mathbf{r} \, \hat{k}_i \right), \\ h_{ij} &= -i \omega^2 F'(\mathbf{k} \cdot \mathbf{r}) \left(|\mathbf{r}|^2 \, h_{ij}^{\mathrm{TT}} \big|_{\mathbf{r}=0} + \mathbf{b} \cdot \mathbf{r} \, \delta_{ij} - b_i r_j - b_j r_i \right), \end{aligned}$

VD, Garcia-Cely, Rodd `22 s.a. Berlin et al `21

we will consider a plane wave and rigid detector in the proper detector frame

$$h_{ij}^{TT} = (h^+ e_{ij}^+(\phi_h, \theta_h) + h^\times e_{ij}^\times(\phi_h, \theta_h))e^{i(\mathbf{k}\cdot\mathbf{r} - \omega\mathbf{t})}$$

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Rodd `22

static magnetic field

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Rodd `22

static magnetic field

effective current

eg ABRACADABRA, SHAFT, DM Radio:

 \mathbf{B}_0 $\mathbf{B}_{\mathrm{ind}} \propto h$ Jeff yx

VD, Garcia-Cely, Rodd `22

static magnetic field

effective current

induced oscillating magnetic field

eg ABRACADABRA, SHAFT, DM Radio:

 \mathbf{B}_0 $\mathbf{B}_{\mathrm{ind}} \propto h$ R r Jeff yx

VD, Garcia-Cely, Rodd `22

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h) through pickup loop

at leading order in (ωR) :

$$\Phi_{\rm gw} = \frac{i \, e^{-i\omega t}}{16\sqrt{2}} \, h^{\times} \omega^3 B_0 \pi r^2 Ra(a+2R) s_{\theta_h}^2$$

5/25

eg ABRACADABRA, SHAFT, DM Radio:

B $\mathbf{B}_{\mathrm{ind}} \propto h$ r $\mathbf{J}_{\mathrm{eff}}$ yx

suppression at low frequencies as $(\omega L)^3$ implies very good volume scaling

Axions and GWs

VD, Garcia-Cely, Rodd `22

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h) through pickup loop

at leading order in (ωR) : $\sim (\omega L)^3 h B_0 L^2$ $\Phi_{gw} = \frac{i e^{-i\omega t}}{16\sqrt{2}} h^{\times} \omega^3 B_0 \pi r^2 Ra(a+2R) s_{\theta_h}^2$

match to axion induced flux to recast axion-photon coupling bounds as GW bounds

$$egin{aligned} \Phi_a &= e^{-i\omega t}\,g_{a\gamma\gamma}\sqrt{2
ho_{
m DM}}B_0\pi r^2R\ln(1+a/R) \ &\sim (\omega L)\,g_{a\gamma\gamma}B_0L^2 \end{aligned}$$
 Valerie Domcke - CERN

optimized pickup loop geometry

spin 2 structure of GW induces angular modulation of induced B field

leading order $(\omega R)^2$ contribution can be captured if cylindrical symmetry is broken, here by using a figure-8 geometry for the pickup loop

 $\sim (\omega L)^2 h B_0 L^2$

$$\Phi_{\text{gw},8} = \frac{e^{-i\omega t}}{3\sqrt{2}} \omega^2 B_0 r^3 R \ln \left(1 + a/R\right) s_{\theta_h} \times \left(h^{\times} s_{\phi_h} - h^+ c_{\theta_h} c_{\phi_h}\right)$$

parametric improvement for modified pickup loop

geometry and time scales

VD, Garcia-Cely, Lee, Rodd `23

Symmetries and selection rules:

- For an instrument with azimuthal symmetry, $\Phi_h \propto h^+$ at $\mathcal{O}[(\omega L)^2]$
- For an instrument with azimuthal symmetry, the flux is proportional to either h^+ or h^x
- For an instrument with full cylindrical symmetry, ϕ_h contains only even or odd powers of ω

geometry and time scales

VD, Garcia-Cely, Lee, Rodd `23

Symmetries and selection rules:

- For an instrument with azimuthal symmetry,
- For an instrument with azimuthal symmetry, the flux is propor
- For an instrument with full cylindrical symmetry, ϕ_h contains (

geometry and time scales

VD, Garcia-Cely, Lee, Rodd `23

Symmetries and selection rules:

- For an instrument with azimuthal symmetry,
- For an instrument with azimuthal symmetry, the flux is propor
- For an instrument with full cylindrical symmetry, ϕ_h contains (

Time scales:

$$\Phi_{h}(h^{+},h^{\times};\phi_{h},\theta_{h}) = \mathcal{R}_{c} \Phi_{a}(g_{a\gamma\gamma}), \qquad \qquad \mathcal{R}_{c} = \left(\frac{T_{m}}{\tau_{h}}\right)^{1/4} \begin{pmatrix} Q_{a} \\ Q_{h} \end{pmatrix}^{1/4} \begin{cases} 1 & Q_{r} < Q_{a}, Q_{h}, \\ Q_{a} < Q_{r} < Q_{h}, \\ Q_{r}/Q_{h} & Q_{h} < Q_{r} < Q_{a}, \\ (Q_{a}/Q_{r})^{1/4}Q_{r}/Q_{h} & \text{otherwise.} \end{cases}$$

signal duration, coherence time < ring up time, axion coherence time, measurement time will reduce detectability

bounds and prospects

still far away from BBN bound, but clear synergies of UHF GW and axion searches

microwave cavities

effective current can also induce power in microwave cavities, Berlin, Blas, D'Agnolo et al `23 in addition consider mechanical deformation of cavity walls:

- GW electrodynamics vs axion electrodynamics
- Searching for high-frequency GWs with axion haloscopes
- [Possible high-frequency GW sources]
- Photon regeneration experiments and cosmological detectors

high frequency (> kHz) GW sources

Cosmological

Astrophysical

- sourced by violent cosmological event in the early Universe
- stochastic GW background (SGWB): stationary, isotropic, broad spectrum
- GW frequency determined by Hubbe horizon at sourcing time
 → high frequency = early Universe
- observationally bounded by BBN and CMB (extra radiation)
- vanilla cosmology: SGWB from cosmic inflation & CGWB very small. But in many BSM models, saturating BBN bound is easy

high frequency (> kHz) GW sources

Cosmological

- sourced by violent cosmological event in the early Universe
- stochastic GW background (SGWB): stationary, isotropic, broad spectrum
- GW frequency determined by Hubbe horizon at sourcing time
 → high frequency = early Universe
- observationally bounded by BBN and CMB (extra radiation)
- vanilla cosmology: SGWB from cosmic inflation & CGWB very small. But in many BSM models, saturating BBN bound is easy

Astrophysical

- localized GW sources, both coherent and incoherent signals possible
- no known astrophysical objects emit (significantly) in UHF band
- eg mergers of light primordial black holes or exotic compact objects, superradiance
- large signals require near-by events
 → rare events with GW strain far above BBN bound are possible
- SGWB from unresolved sources, typically harder to detect

UHF GW searches are always a search for New Physics

astrophysical sources

astrophysical sources

challenges in UHF GW detection

CMB/BBN bound constrains energy

challenges in UHF GW detection

CMB/BBN bound constrains energy

experiments measure displacement

challenges in UHF GW detection

CMB/BBN bound constrains energy

experiments measure displacement

Living Review on sources & detectors: https://arxiv.org/abs/2011.12414

- GW electrodynamics vs axion electrodynamics
- Searching for high-frequency GWs with axion haloscopes
- [Possible high-frequency GW sources]
- Photon regeneration experiments and cosmological detectors

GW to photon conversion

(inverse) Gertsenshtein effect:

[Gertsenshtein `62, Boccaletti et al `70, Raffelt, Stodolsky `88]

 $A_{\lambda} = \text{photon}$ $h_{\lambda} = \text{GW}$ B = ext. transv. B - field $\omega_{\text{pl}} = \text{plasma frequency}$ $\mu^2 = 1 - \omega_{\text{pl}}^2 / \omega^2$

plane waves:

$$\rightarrow \quad \psi(t,z) \equiv \begin{pmatrix} \sqrt{\mu} & A_{\lambda} \\ \frac{1}{\kappa} & h_{\lambda} \end{pmatrix} = e^{-i\omega t} e^{iKz} \psi(0,0) , \qquad K = \begin{pmatrix} \frac{\mu}{c} \sqrt{\omega^2 + \left(\frac{\kappa B}{1+\mu}\right)^2} & -i\frac{\sqrt{\mu}\kappa B}{1+\mu} \\ i\frac{\sqrt{\mu}\kappa B}{1+\mu} & \frac{1}{c} \sqrt{\omega^2 + \left(\frac{\kappa B}{1+\mu}\right)^2} \end{pmatrix}$$

EM wave in curved space time (i.e. classical linearized general relativity) \rightarrow purely SM process

 $\left(\Box + \omega_{\rm pl}^2/c^2\right) A_{\lambda} = -B\partial_z h_{\lambda}, \quad \Box h_{\lambda} = \kappa^2 B\partial_z A_{\lambda}$

$$\hat{\mathbf{e}}_{1}$$
 $\hat{\mathbf{e}}_{3}$ $\hat{\mathbf{e}}_{3}$

analogous to axion to photon conversion

LSW experiments

[Ejilli et al `19]

axion bounds recast as HFGW bounds

a cosmic GW detector

idea: compensate small GW to EM coupling with cosmologically big detector:

GW source
$$h_{\mu\nu}$$
 γ radio telescope cosmic magnetic fields B

a cosmic GW detector

idea: compensate small GW to EM coupling with cosmologically big detector:

Valerie Domcke - CERN

a cosmic GW detector

idea: compensate small GW to EM coupling with cosmologically big detector:

Valerie Domcke - CERN

Conclusions and Outlook

Synergies between GW and axion searches

- GW electrodynamics has clear similarities with axion electrodynamics: Important synergies between axion searches and UHF GW searches
- New bounds and prospects for low-mass axion haloscopes as GW detectors
- Also SRF cavities, LSW experiments, cosmological detectors,....

GW sources at high frequencies

- GW signals >> kHz would be a smoking gun of BSM physics
- Cosmological signals well motivated, but amplitude constrained by BBN and CMB
- Larger astrophysical signals from rare exotic events possible, e.g. light PBHs

Conclusions and Outlook

Synergies between GW and axion searches

- GW electrodynamics has clear similarities with axion electrodynamics: Important synergies between axion searches and UHF GW searches
- New bounds and prospects for low-mass axion haloscopes as GW detectors
- Also SRF cavities, LSW experiments, cosmological detectors,....

GW sources at high frequencies

- GW signals >> kHz would be a smoking gun of BSM physics
- Cosmological signals well motivated, but amplitude constrained by BBN and CMB
- Larger astrophysical signals from rare exotic events possible, e.g. light PBHs

backup slides

Axions and GWs

Valerie Domcke - CERN

cosmological sources

Amplitude: BBN / CMB bound

$$\frac{\rho_{GW}^0}{\rho_c^0} = \Omega_{\gamma}^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \underbrace{\frac{\rho_{GW}(T)}{\rho_{\gamma}(T)}}_{\lesssim 10\%} \Big|_{T_{\text{CMB, BBN}}} \le 10^{-5} \ \Delta N_{eff} \simeq 10^{-6}$$

for a broadband SGWB: $\rightarrow h_{c,\text{sto}} \lesssim 10^{-29} \left(100 \text{ MHz}/f\right) \Delta N_{\text{eff}}^{1/2}$

cosmological sources

Amplitude: BBN / CMB bound

$$\frac{\rho_{GW}^0}{\rho_c^0} = \Omega_{\gamma}^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \underbrace{\frac{\rho_{GW}(T)}{\rho_{\gamma}(T)}}_{\lesssim 10\%} \Big|_{T_{\text{CMB, BBN}}} \le 10^{-5} \Delta N_{eff} \simeq 10^{-6}$$

for a broadband SGWB: $\rightarrow h_{c,\text{sto}} \lesssim 10^{-29} \left(100 \text{ MHz}/f\right) \Delta N_{\text{eff}}^{1/2}$

Frequency: tied to energy scale of cosmic event

during radiation era: $f \sim 100 \text{ MHz}/\epsilon_* (T_*/10^{15} \text{ GeV}), \quad \epsilon_* \lesssim 1$ during inflation: $f \sim 10^{-18} \text{ Hz} \ e^{N_{\rm CMB}-N} \lesssim 10^8 \text{ Hz} \ e^{-N}, \quad N_{\rm CMB} \lesssim 60$

cosmological sources

Amplitude: BBN / CMB bound

$$\frac{\rho_{GW}^0}{\rho_c^0} = \Omega_{\gamma}^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \underbrace{\frac{\rho_{GW}(T)}{\rho_{\gamma}(T)}}_{\lesssim 10\%} \Big|_{T_{\text{CMB, BBN}}} \le 10^{-5} \Delta N_{eff} \simeq 10^{-6}$$

for a broadband SGWB: $\rightarrow h_{c,\text{sto}} \lesssim 10^{-29} \left(100 \text{ MHz}/f\right) \Delta N_{\text{eff}}^{1/2}$

Frequency: tied to energy scale of cosmic event

during radiation era: $f \sim 100 \text{ MHz}/\epsilon_* (T_*/10^{15} \text{ GeV}), \quad \epsilon_* \lesssim 1$ during inflation: $f \sim 10^{-18} \text{ Hz} \ e^{N_{\text{CMB}}-N} \lesssim 10^8 \text{ Hz} \ e^{-N}, \quad N_{\text{CMB}} \lesssim 60$

Examples: (Axion) inflation, (p)reheating, relic cosmic GW background, phase transitions (first order PT and/or topological defects from PTs) ,...

see Living Review: https://arxiv.org/abs/2011.12414 Axions and GWs 20 / 25

Valerie Domcke - CERN

BBN bound

radiation energy after electron decoupling: $\rho_{rad} = \frac{\pi^2}{30} \left(2 + \frac{7}{4} \left(\frac{4}{11} \right)^{4/3} (3.046 + \Delta N_{eff}) \right) T^4$

at BBN or CMB decoupling:

$$\rho_{GW}(T) < \Delta \rho_{rad}(T) \quad \Rightarrow \quad \left(\frac{\rho_{GW}}{\rho_{\gamma}}\right)_{T_{BBN,CMB}} \le \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{eff} \simeq 0.05$$

at BBN, CMB decoupling ~ 5 % GW energy density allowed

today:

$$\frac{\rho_{GW}^0}{\rho_c^0} = \Omega_{\gamma}^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \frac{\rho_{GW}(T)}{\rho_{\gamma}(T)} \le 10^{-5} \Delta N_{eff} \simeq 10^{-6}$$

note: constraint on *total* GW energy

today, energy fraction $< 10^{-6}$ (for GWs present at BBN / CMB decoupling)

astrophysical sources

GW electrodynamics

homogeneous Maxwell equation

$$0 = \nabla_{\mu}F_{\nu\rho} + \nabla_{\nu}F_{\rho\mu} + \nabla_{\rho}F_{\mu\nu} = \partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu}$$
$$\rightarrow F_{\alpha\beta} = \partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha} \qquad \text{independent of background metric}$$

inhomogeneous Maxwell equation

$$\begin{split} \nabla_{\nu} \left(g^{\alpha\mu} F_{\alpha\beta} g^{\beta\nu} \right) &= j^{\mu} & \rightarrow \partial_{\nu} \left(\sqrt{-g} \, g^{\alpha\mu} F_{\alpha\beta} \, g^{\beta\nu} \right) = \sqrt{-g} \, j^{\mu} \\ \text{expand in h:} \quad g^{\alpha\mu} F_{\alpha\beta} \, g^{\beta\nu} \simeq F^{\mu\nu} - F_{\alpha}^{\ \nu} h^{\alpha\mu} - F^{\mu}{}_{\beta} h^{\beta\nu}, \quad \sqrt{-g} \simeq 1 + h/2 \\ \partial_{\nu} \left(\left(1 + \frac{h}{2} \right) F^{\mu\nu} - F_{\alpha}^{\ \nu} h^{\alpha\mu} - F^{\mu}{}_{\beta} h^{\beta\nu} \right) = \left(1 + \frac{h}{2} \right) j^{\mu} + \mathcal{O}(h^2), \\ \partial_{\nu} F^{\mu\nu} &= \left(1 + \frac{1}{2} h \right) j^{\mu} + \partial_{\nu} \left(-\frac{1}{2} h \, F^{\mu\nu} + F_{\alpha}^{\ \nu} h^{\alpha\mu} + F^{\mu}{}_{\beta} h^{\beta\nu} \right) + \mathcal{O}(h^2) \\ \hline j_{\text{eff}}^{\mu} \end{split}$$

GW to photon conversion

(inverse) Gertsenshtein effect:

[Gertsenshtein `62, Boccaletti et al `70, Raffelt, Stodolsky `88]

 $A_{\lambda} = \text{photon}$ $h_{\lambda} = \text{GW}$ B = ext. transv. B - field $\omega_{\text{pl}} = \text{ plasma frequency}$ $\mu^2 = 1 - \omega_{\text{pl}}^2 / \omega^2$

plane waves:

$$\rightarrow \quad \psi(t,z) \equiv \begin{pmatrix} \sqrt{\mu} \ A_{\lambda} \\ \frac{1}{\kappa} \ h_{\lambda} \end{pmatrix} = e^{-i\omega t} e^{iKz} \psi(0,0) , \qquad K = \begin{pmatrix} \frac{\mu}{c} \sqrt{\omega^2 + \left(\frac{\kappa B}{1+\mu}\right)^2} & -i\frac{\sqrt{\mu} \kappa B}{1+\mu} \\ i\frac{\sqrt{\mu} \kappa B}{1+\mu} & \frac{1}{c} \sqrt{\omega^2 + \left(\frac{\kappa B}{1+\mu}\right)^2} \end{pmatrix}$$

EM wave in curved space time (i.e. classical linearized general relativity) \rightarrow purely SM process

 $\left(\Box + \omega_{\rm pl}^2/c^2\right) A_{\lambda} = -B\partial_z h_{\lambda}, \quad \Box h_{\lambda} = \kappa^2 B\partial_z A_{\lambda}$

$$\hat{\mathbf{e}}_{2}$$
 $\hat{\mathbf{e}}_{3}$ $\hat{\mathbf{e}}_{3}$

analogous to axion to photon conversion

microwave cavities

[Berlin et al `21]

