HORN STUDIES FOR SPL-SUPERBEAM

Christoph Bobeth IPHC Strasbourg

CERN - 17th March 2010

Christoph Bobeth

CERN - WP2 - EURO ν meeting

- Shape optimisation
 ⇒ NuFact-horn
- Energy deposition
 - \Rightarrow MiniBoone-like horn, decay tunnel, beam dump

... various ideas

PROBLEM: A GOOD CRITERIA FOR OPTIMISATION

- sensitivity of physics parameters (θ₁₃, δ_{CP}), BUT requires full simulation and also details on detector
- optimise
 ν spectrum in solid angle corresponding to detector → still too time consuming, requires full simulation of target, horn, decay tunnel and beam dump
- optimise π spectrum afer exiting horn

... to be done

ANALYSIS OF "MAGNETIC FIELD EXIT POINTS" (=MFEP)

 \rightarrow shape should contain some conic form looking at π tracks in magnetic field \sim 1/r until they aligned with beam axis \rightarrow that's where the inner conductor should be...

MFEP – inner R = 3 cm, I = 300 kA, B_0 = 2 Tesla

Christoph Bobeth

CERN - WP2 - EURO_V meeting

MFEP – inner R = 3 cm, I = 450 kA, B_0 = 3 Tesla

Christoph Bobeth

CERN - WP2 - EURO_V meeting

MFEP – INNER R = 5 cm, I = 300 kA, B_0 = 1.2 Tesla

Christoph Bobeth

CERN - WP2 - EURO_V meeting

HORN STUDIES – π decay kinematics

Probability of ν_{μ} ending up in detector depends on

π-momentum {0.3, 0.6, 0.9, 1.2} GeV

• angle
$$(\delta = -\alpha)$$

 \rightarrow more important to focus π 's with large momentum

 $P(\alpha, L) = \frac{1}{4\pi} \frac{A}{L^2} \frac{1-\beta^2}{(1-\beta\cos\alpha)^2}$ for dim(decay tunnel) $\ll L$

REOPTIMISING NUFACT HORN (I)

- optimizing for longer Carbon target $L^{tg} = 78$ cm (previous Hg $L^{tg} = 30$ cm)
- removing reflector with current *I* = 600 kA introduced by Campagne/Cazes

Christoph Bobeth

CERN - WP2 - EURO ν meeting

REOPTIMISING NUFACT HORN (II)

Scoring number of π 's at z = 3 m through circular plane R = 1 m in π^+ focusing mode with selection of (500 < p_{π} < 700) MeV

1) maximising the absolute number of π 's

RefNr.	L ₁ [cm]	L ₂ [cm]	<i>R</i> ₂ [cm]	<i>R</i> ₃ [cm]	α [°]
mod1	60	120	17.6	6	8.3
mod2	60	140	17.6	6	7.2
mod3	60	120	17.6	5	8.3

2) maximising the ratio (number π^+)/(number π^-)

RefNr.	L ₁ [cm]	L ₂ [cm]	<i>R</i> ₂ [cm]	<i>R</i> ₃ [cm]	α [°]
mod4	80	100	17.6	6	10.0
mod5	100	60	14.6	5	13.7
mod6	100	80	16.6	6	11.7

still preliminary result - crude scan over parameter space, larger values of $L_{1,2}$ and $R_{2,3}$ might even better, use α instead of R_2

Christoph Bobeth

CERN - WP2 - EURO ν meeting

REOPTIMISING NUFACT HORN (III)

 3σ discovery of non-zero sin²($2\theta_{13}$) [in collab with A.Longhin]

Christoph Bobeth

CERN - WP2 - EURO_V meeting

ENERGY DEPOSITION – MINIBOONE-LIKE HORN

Perhaps Andrea can reoptimise for $R_2 \neq 0$ cm?!

No reflector here...

Christoph Bobeth

CERN - WP2 - EURO ν meeting

Remember, that at 4 MW and 50 Hz for E = 4.5 GeV ...

```
... 0.56 \times 10^{16} p.o.t/s and 1.11 \times 10^{14} p.o.t/pulse
```

Horn material in simulation: Aluminium

Horn thickness: 1 cm

Too thick??? – Perhaps, but NuFact prototype had upto 6 mm + 2 mm skin thickness due to double-layer design for inner conductor - along the conic section dropping to 3 mm + 2 mm.

ENERGY DEPOSITION – I = 0 kA

Christoph Bobeth

CERN - WP2 - EURO ν meeting

Energy deposition – I = 450 kA

Christoph Bobeth

CERN - WP2 - EURO ν meeting

TARGET + HORN + DECAY TUNNEL + BEAM DUMP – I = 450 kA

Christoph Bobeth

CERN - WP2 - EURO_V meeting

TOTAL ENERGY DEPOSITION

Power [kW]	I = 0 kA	<i>l</i> = 450 kA	
target	202	203	
horn	140	154	
decay tunnel	2291	2161	
beam dump	653	765	
sum	3285	3283	

DECAY TUNNEL = Molasse (CNGS studies CERN-OPEN-2006-009) mass fractions: 53.9 % O, 29.4 % Si, 12.2 % Ca, 3.67 % C, 0.73 % H dimensions: L = 40 m, R = 2 mBEAM DUMP = C ($\rho = 1.85 \text{ g/cm}^3$)

horn focusing shuffles \sim 110 kW from decay tunnel into beam dump and increases energy deposition in horn by 10 %

Christoph Bobeth