Challenges of the next generation silicon array

A. Matta, LPC Caen, CNRS/IN2P3 In-Beam Spectroscopy WS 2023

Normandie Université

Introduction	
000000	

Mechanical

PSA 000 Electronic

Software

Conclusion

History

GASPARD (IN2P3)

- Beam: SPIRAL2 Phase2
- γ-rays: AGATA & PARIS
- Cryotarget: CHyMEN

- Beam: SPES
- γ -rays: AGATA & GALLILEO
- Special target: Tritium foil

TRACE (INFN)

Introduction	Mechanical	PSA
000000		

Conceptual detection system

Electronic 00000000 Software

Conclusion

Key features: G.R.I.T

Conclusion

- Two body kinematic
 - Granularity
 - DSSD
 - Resolution
 - \sim 35keV

Electronic OCOCOCO Software OC Conclusion OC Key features: G.R.I.T • Two body kinematic • Granularity • DSSD • Resolution • ~35keV

$ightarrow \sim$ 7000 individual channels

Electronic 00000000 Software 0 Key features: G.R.I.T • Two body kinematic • Granularity • DSSD • Resolution • ~35keV • Resolution • ~35keV → ~ 7000 individual channels • Many reaction channel • Identification (NIM A 908(2018)250-255)

TOF (mass only, low energy)
E∆E (charge & mass, high energy)
PSA (charge & mass, low energy)

Conclusion

	Electronic 00000000	Software O	Conclusion
ίey	features: G.R.I.T		
•	Two body kinematic • Granularity • DSSD • Resolution • ~35keV		
\rightarrow	\sim 7000 individual cha	nnels	
•	Many reaction channe • Identification (NIM • TOF (mass on	 A 908(2018)250-255) y, low energy)	

- $E\Delta E$ (charge & mass, high energy)
- PSA (charge & mass, low energy)
- \rightarrow Telescope + Digital Electronic + nTD silicon

Electronic Software Conclusion Key features: G.R.I.T Two body kinematic ٠ Granularity DSSD Resolution ~35keV \sim 7000 individual channels \rightarrow Many reaction channel • • Identification (NIM A 908(2018)250-255) • TOF (mass only, low energy) • $E\Delta E$ (charge & mass, high energy) • PSA (charge & mass, low energy) Telescope + Digital Electronic + nTD silicon \rightarrow •

- Particle & γ coinc.
 - Transparency
 - Low material budget

Key features: G.R.I.T

Two body kinematic

Electronic

- Granularity
 - DSSD
- Resolution
 - \sim 35keV

$ightarrow \sim$ 7000 individual channels

- Many reaction channel
 - Identification (NIM A 908(2018)250-255)

Software

Conclusion

- TOF (mass only, low energy)
- EΔE (charge & mass, high energy)
- PSA (charge & mass, low energy)
- → Telescope + Digital Electronic + nTD silicon
- Particle & γ coinc.
 - Transparency
 - Low material budget
- → Optimized geometry Metal 3D printing

Electronic Software Conclusion Key features: G.R.I.T Two body kinematic ٠ Granularity DSSD Resolution ~35keV \sim 7000 individual channels Many reaction channel • Identification (NIM A 908(2018)250-255) • TOF (mass only, low energy) EΔE (charge & mass, high energy) • PSA (charge & mass, low energy) Telescope + Digital Electronic + nTD silicon \rightarrow

- Particle & γ coinc.
 - Transparency
 - Low material budget
- \rightarrow Optimized geometry Metal 3D printing

Challenge of integration!

Introduction	

Mechanical ●○○ **PSA** 000 Electronic 00000000 Software

Conclusion

Overall architecture Y. Peinaud (IJCLab)

Introduction	
000000	

Mechanical ●○○

PSA 000 Electronic 00000000 Software

Conclusion

Overall architecture Y. Peinaud (IJCLab)

Early telescope design E. Rindel (IJCLab)

Introduction	
000000	

Mechanical ●○○ **PSA** 000 Electronic 00000000 Softwar O Conclusion

Overall architecture Y. Peinaud (IJCLab)

GRIT/AGATA@SPES Y. Peinaud (IJCLab)

Introduction	
000000	

Mechanical ○●○ **PSA** 000 Electronic 00000000 Software

Conclusion

Geant4 simulation S. Bottoni (Milano)

CAD

GDML-GEANT4*

Introduction	Mechanical	PSA	Electronic	Software	Conclusion
	000				

Geant4 simulation S. Bottoni (Milano)

Introduction

Mechanical ○○●

PSA 000 Electronic 00000000 Software

Conclusion

3D printed Frame Y. Peinaud (IJCLab)

Introduction

Mechanical ○○● **PSA** 000 Electronic 00000000 Software O Conclusion

3D printed Frame Y. Peinaud (IJCLab)

Thermal Study P. Rosier (IJCLab)

000000	000	000	00000000		00
Stopping power a	at 5 MeV		Physics at play		
E	Al	SiO ₄ p+	 Energy loss: Higher Z, Higher → Faster depos → in smaller 	r A it area	
P	d t	n-			

DEA

Conclusion

50

GRIT

Software

Conclusion

Introduction	Mechanical 000	PSA 000	Electronic 0●000000	Software O	Conclusion
-					

Introduction 000000	Mechanical 000	PSA 000	Electronic 00●00000
Schematic (E	E. Rauly, IJCLab)		Routing (M.L. N
Board 1 Board 2/3	90mm	40mm	

Routing (M.L. Mercier, LPClermont)

BGA packaging difficult to route!

Introduction

Mechanical

PSA 000 Electronic

Software

Conclusion

Packaging (L. Alvado, S. Drouet LPC Caen)

PLAS history

- Original idea from R. Aliaga (Uni. Of. Valancia / IFIC)
- V1 not functional issue with logic block

- V2 designed but never submitted submitted by LPC Caen in 2020
- V3 design at LPC Caen Submission in 2024

R. Aliaga et al, NIMA 800(2015)34-39

troduction	

Mechanical

PSA 000 Electronic 00000●00 Software ○ Conclusion

PLAS Redesign (S. Drouet, G. Martinez, L. Alvado, L. Leterrier, LPC Caen)

- The total parasitic capacitance is 970 fF compared to the memory capacitance which is 270 fF. This gives us a capacitive gain of about 4.6
- > Parasitic capacitances of each elementary device:

	표응 물리
1 cellule de T&H (Hold)	17,9
1 bloc	37,4
Switches contre-réaction	62,3
Switchs Bloc V-	59,2
Switch TH V- (Tracking)	46,5
Switch de RAZ du TH	4,4
Entrée V- AMP_SCA	55,8

The parasitic capacitance is mainly dominated by the capacity of the 31 T&H switches in "hold" mode followed by the capacity of the 5 blocks. About 742 fF for these 2 blocks

000000	000	000	00000	© ●○○	O			
LAS Redesign (S. Drouet, G. Martinez, L. Alvado, L. Leterrier, LPC Caen)								
		Sampling Noise [892,857 kHz; 1 GHz]	Reading Noise [200 kHz; 1 GHz]	Total Noise	SNR	DC ENOB		
PLASv2 Sc	hematics	672 μV _{RMS}	755 μV_{RMS}	917 μ V_{RMS}	52,5 dB	8,4 bits		
Modified	Schematics [1]	$227 \ \mu V_{RMS}$	$478 \ \mu V_{RMS}$	$455 \mu V_{RMS}$	58,6 dB	9,4 bits		
Modified	Schematics [3]	178 μV _{RMS}	282 μV_{RMS}	293 μV_{RMS}	62,5 dB	10,08 bits		
Modified	Schematics [4]	170 μ V_{RMS}	$271 \ \mu V_{RMS}$	$281 \mu V_{RMS}$	62,8 dB	10,14 bits		
Without in	nput amp + [4]	117 μV_{RMS}	$271 \mu V_{RMS}$	$253 \ \mu V_{RMS}$	63,7 dB	10,30 bits		

Be careful: $TotalNoise = \sqrt{\sigma_S^2 + \left(\frac{\sigma_R}{1,21}\right)^2}$

Modified Schematics :

- AMP_IN :
 - Input stage modified by Ludo
 - Cc=732 fF instead of 579 fF
- [1] : BUF_REF deleted + decoupling Cap added
- [3] : [1] + Cmem=540 fF + AMP_SCA Cc=1,53 pF + Swap T&H Cells
- [4] : [3] + 1 AMP_SCA per block

Introduction	Mechanical	PSA 000	Electronic 00000000	Software O	Conclusion ●○			
IJCLab								
M. Assié, D. Beaume	el, Y. Bluxmenfeld, V. (Girard-Alcindor, Y.	Peinaud, E. Rauly, P.	Rosier, C. Soulet				
LPC Caen								
L. Alvado, B. Carniol, S. Drouet, D. Etasse, F. Flavigny, L. Letterrier, G. Martinez, A. Matta, J. Poincheval								
CANU								
GANIL								
F. Ingouf, G. Wiettwer, G. de France								
Italy								
S. Bottoni, S. Capra, F. Galtarosa, A. Gottardo, D. Mengoni								
UK								
W. Catford, C. Paxm	an							
Spain								
A. Gadea, B. Fernand	dez-Dominguez							
	A. Matta	- CC-BY-ND 2.0 GRIT						

