The Strange Beauty beyond the SM

Where do the we stand?

Success of EW precision tests

Success of CKM ansatz (at tree level)

Generation of mass?.

m_H diverges due to 1-loop Higgs propagator?

Number of space dimensions? Quantum gravity?

Quantization of charge?

Mass hierarchy between families?

Family replication?

Proliferation of parameters?

Matter-antimatter asymmetry?

Dark matter? Dark energy?

2/50

CPPM – 2010-03-15

Challenging the New Physics fortress

Direct (relativistic) way

Direct observation of onshell new particles. Needs (very) high-energy.

Presence of NP revealed by data-theory inconsistencies in low-energy quantities. Needs (very) high statistics.

CPPM – 2010-03-15

"The flavor problem"

Kaon physics and *B* factories: SM picture of CP violation satisfactory at least at tree level in B^0 and B^+ decays. NP amplitudes < 10%, if any.

... the end of the story?

Success of the CKM picture rules out NP with generic flavor structure. To keep the NP-scale in the TeV range, physics beyond the SM should have a highly fine-tuned flavor structure

CPPM – 2010-03-15

Why Strange Bottom mesons?

V On the Autonomy of B_s Dynamics

original paradigm: need $B_d \& B_s$ to determine all 3 angles $\phi_2/\alpha, \phi_1/\beta$ from $B_d vs. \phi_3/\gamma$ from B_s new paradigm: can get all angles from B_d Furthermore NP in general will not obey SM relations between B and B_s decays B_s decays a priori independent chapter in nature's book on fundamental dynamics $B_s(t) \rightarrow \psi \phi, \psi \eta, \phi \phi$ not a repetition of lessons from $B_d \& B_u$ decays!

stolen from I. Bigi, CERN Theory Institute, 26/5/2008

What's left for New Physics?

New physics, if any, in suppressed processes. Need high statistics

CPPM – 2010-03-15

D. Tonelli, Fermilab

The Tevatron

Superconducting proton-synchrotron: 36 (p)× 36 (pbar) bunches collide every 396 ns at $\sqrt{s} = 1.96$ TeV

interactions/bunch-crossing..... $\langle N \rangle_{poisson} = 2$ (at 10^{32} cm⁻²s⁻¹)

Luminous region size.

30 cm (beam) × 30 μm (transverse) need long Si-vertex small wrt ct(*B*) ~ 450 μm

Luminosity

routinely starting at 3.5×10^{32} cm⁻² s⁻¹ ~ 50 pb⁻¹ / week recorded on tape >7 fb⁻¹ on tape now.

CPPM – 2010-03-15

pp collisions: a challenge for *flavor* physics

Strong, incoherent production of all bhadrons: ~2000 *B* per second within acceptance. Backgrounds 5×10³ larger. Lorentz-boosts βγ~2. Displaced vertices Messy environment

Crucial role of highly-selective trigger

CPPM - 2010-03-15

Old-school: di-muons

Clean signature and high rates. Each muon candidate with ($|\eta| < 0.6 \text{ AND } p_T > 1.5 \text{ GeV/c}$) OR (0.6< $|\eta| < 1.0 \text{ AND } p_T > 2.0 \text{ GeV/c}$)

Revolutionary: displaced tracks

Sufficiently boosted *B* fly a path resolvable with vertex detectors before decaying.

CDF only experiment to have Si-track trigger

An experimental challenge that requires

(1) high resolution vertex detector

(2) read out silicon (212,000 channels);

within 25

(3) do pattern recognition and track fitting

PLANE TRANSVERSE TO THE BEAM primary vertex (b-quark production) $d_0 \approx 100 \ \mu m$ secondary vertex (b-hadron decay) π 48 µm resolution per π 4000 3000 2000 1000 0-500-400-300-200-100 0 100 200 300 400 500 SVT d_o (µm)

CPPM - 2010-03-15

The result

The world's largest samples of heavy flavor decays. With 5 fb⁻¹

Today: three CDF measurements involving B^{0}_{s} mesons that are particularly deadly in killing NP models.

(or, hopefully, effective in discovering them)

The Bad - $B^0_s \rightarrow \mu^+ \mu^-$

$B^0_s \rightarrow \mu^+ \mu^-$ - trivia

GIM, CKM, and helicity suppressed in the SM.

All leptonic decay. Robust SM prediction Br = $(3.42 \pm 0.54) \times 10^{-9}$.

NP can enhance rate up to 100×.

MSSM: Br $\propto \tan^6(\beta)$.

RPV SUSY enhances also at low $tan(\beta)$.

Sensitive to a broad class of NP models, complementary to many TeV/LEP direct searches.

Either observation or null result provides crucial information

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ - the measurement

Latest result (summer 2009) uses 3.7 fb⁻¹ (half of current sample)

The challenge: reject 10⁶ background while keeping signal efficiency high.

CPPM – 2010-03-15

D. Tonelli, Fermilab

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

CPPM – 2010-03-15

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

CPPM – 2010-03-15

$B^0_s \rightarrow \mu^+ \mu^-$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

CPPM – 2010-03-15

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

CPPM – 2010-03-15

$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

CPPM – 2010-03-15

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$ - backgrounds

Possible offenders:

- ✓ continuum $\mu\mu$ from Drell-Yan
- ✓ sequential *b*→ $c\mu X$ → $\mu\mu s$ semilept.
- ✓ double semileptonic $bb \rightarrow \mu\mu+X$
- \checkmark *b/c* \rightarrow μ + fake

✓ fake + fake (dominated by peaking $B \rightarrow hh$ component)

Suppress fakes: calorimeter, dE/dx, muon-track matching. All calibrated on $J/\psi \rightarrow \mu\mu$, $D^0 \rightarrow K\pi$, $\Lambda \rightarrow ph$ decays in data.

Combinatorial: extrapolate from sidebands into signal region

Extensive checks with background-enriched control samples: samesign dimuons, dimuons with <0 decay-length, dimuons failing fake veto

$B^0_s \rightarrow \mu^+ \mu^-$ - results

	$\begin{array}{c} \mathcal{B}(B_s \to \mu^+ \mu^-) \\ 90\% \end{array}$	95%	$ \begin{array}{c} \mathcal{B}(B_d \to \mu^+ \mu^-) \\ 90\% \end{array} $	95%
Expected \mathcal{B}	2.7×10^{-8}	3.3×10^{-8}	7.2×10^{-9}	9.1×10^{-9}
Observed \mathcal{B}	3.6×10^{-8}	4.3×10^{-8}	6.0×10^{-9}	7.6×10^{-9}

World-leading result. 10*SM with 3.7 fb⁻¹.

40x improvement with respect to Run I (world best in 2001).

Plenty of NP models already excluded.

This result CDF Note 9892,

- 2 fb⁻¹ PRL100, 101802 (2008) topcite100+
- 0.78 fb⁻¹ PRL93, 032001 (2008) topcite50+

CPPM - 2010-03-15

D. Tonelli, Fermilab

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ past and future

<2×10⁻⁸ (6×SM) at 10 fb⁻¹ (~year 2011). Combined with DØ may reach 4×SM

CPPM – 2010-03-15

D. Tonelli, Fermilab

10

25/50

CDF BR($B_s \rightarrow \mu^+ \mu^-$) Projection

The Ugly – $B_s^0 \rightarrow h^+h'^-$

$B^{0}_{(s)} \rightarrow h^{+}h^{-}$ - motivation

Decays of B^0 and B^0_s mesons into pairs of charged kaons and pions (*KK*, *K* π , π π)

Multiple decays related by flavor-symmetries (cancel some theory-uncertainties) and similar final states (cancel some systematics):

Measurements of Br and CP-violation

Probe presence of NP in "penguins".

Sensitive to CKM angle $\boldsymbol{\gamma}$ through penguins

Test low-energy QCD effective models.

$B^{0}_{(s)} \rightarrow h^{+}h^{-}$ - the first challenge

S/B at production is 10⁻⁹. Very "common" signatures (no intermediate resonances, just π or K – as background). Yet in 2000 few believed that a signal would have ever been seen.

CDF has today the world's largest samples of charm-less B decays.

CPPM - 2010-03-15

D. Tonelli, Fermilab

$B^{0}_{(s)} \rightarrow h^{+}h^{-}$ - the second challenge

Insufficient mass and PID resolution to discriminate decay modes on a per-event basis

CPPM – 2010-03-15

D. Tonelli, Fermilab

$B^{0}_{(s)} \rightarrow h^{+}h^{-}$ - depuzzling sample composition

0.06

0.05

0.04

0.03

0.02

0.01

D

-10

-8

-6

-4

Correlation between any (arbitrary) mass assignment and momentum imbalance

Output pulse-width of 96 COT samplings $\propto \log(Q)$. 1.5 σ K/ π separation at p>2 GeV/c

-2

O

2

4 6 8 10 dE/dx residual (ns)

K∓

 π

Statistical separation using kinematics and PID folded in a 5dimensional ML fit.

CPPM – 2010-03-15

D. Tonelli, Fermilab

10 Momentum [GeV/c]

$B^{0}_{(s)} \rightarrow h^{+}h^{-}$ - results

 $4000 \ B^{0} \rightarrow K^{+}\pi$ $\underline{1300} \ B^{0}{}_{s} \rightarrow K^{+}K^{-} \text{ per fb}^{-1}$

Four new decay modes observed (2 B_s^0 and 2 Λ_b^0).

Access to DCPV asymmetries in B^{0}_{s} decays. DCPV asymmetries in B^{0} decays competitive with *B*-factories

$$\frac{f_s}{f_d} \times \frac{BR(B_s^0 \to K^+ K^-)}{BR(B^0 \to K^+ \pi^-)} = 0.347 \pm 0.020(stat.) \pm 0.021(syst.)$$

$$BR(B_s^0 \to K^- \pi^+) = (5.0 \pm 0.7(stat.) \pm 0.8(syst.)) \times 10^{-6}$$

$$A_{CP}(B^0 \to K^+\pi^-) = -0.086 \pm 0.023(stat.) \pm 0.09(syst.)$$

A plethora of measurements

1 fb ⁻¹	PRL103, 031801 (2009), CDF Notes 8579, 9092
0.18 fb ⁻¹	PRL97, 211802 (2006) topcite50+

$B^{0}_{(s)} \rightarrow h^{+}h^{-}$ - a model independent NP test

Unitarity of CKM matrix:

 $\operatorname{Im}(V_{ub}^*V_{us}V_{cb}V_{cs}^*) = -\operatorname{Im}(V_{ub}^*V_{ud}V_{cb}V_{cd}^*)$,

implies a relation between differences of CP-rates that is valid only in the SM. Unambiguous check if DCPV is induced by NP or by SM amplitudes.

$$\Gamma(\overline{B}^{0} \to K^{-}\pi^{+}) - \Gamma(B^{0} \to K^{+}\pi^{-}) = \Gamma(B^{0}_{s} \to K^{-}\pi^{+}) - \Gamma(\overline{B}^{0}_{s} \to K^{+}\pi^{-})$$

We measure:

$$\frac{\Gamma(\overline{B}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-)}{\Gamma(\overline{B}^0_s \to K^+ \pi^-) - \Gamma(B^0_s \to K^- \pi^+)} = -0.83 \pm 0.41(stat.) \pm 0.12(syst.)$$
(-1 in the SM)

Still limited by statistics. Now, with ~5x data on tape, may have real chance to probe NP in these decays.

CPPM - 2010-03-15

D. Tonelli, Fermilab

The Good – $B^0_s \rightarrow J/\psi\phi$

Mixing phase - experimental picture

Mixing phase - role of $b \rightarrow ccs$ transitions

CPPM – 2010-03-15

D. Tonelli, Fermilab

Mixing phase - signal extraction

Selection based on ANN ~3200 signal decays with S/B~2 in 2.8 fb⁻¹

D. Tonelli, Fermilab
Mixing phase - vertex resolution

CDF tracker - 1 silicon layer at 1.5 cm from the beam plus 5 double-sided sensors at 2.5--10 cm.

Mixing phase - CP composition

 B_s^0 (pseudoscalar) $\rightarrow J/\psi$ (vector) ϕ (vector). Final states CP-even (S- or D-wave, short-lived and light) and CP-odd (P-wave, long-lived, heavy).

Exploit different dependence on phase between *CP*-even and *CP*-odd Angular correlations in decay products \rightarrow separation of CP-components.

D. Tonelli, Fermilab

Mixing phase - "Transversity" basis

State at time *t* decomposed in: polarizations longitudinal to direction of motion (CP-even), polarizations transverse and \perp each other (CP-even), polarizations transverse and // each other (CP-odd). PLB 369, 144 (1996)

CPPM – 2010-03-15

D. Tonelli, Fermilab

Mixing-phase - production-flavor

Flavor-tagging inherited from mixing-frequency measurement

b-quarks mainly produced in $b\overline{b}$ -pairs at the Tevatron

Opposite Side: looks at decay of the 'other' *b*-hadron in the event

Same Side: exploits the charge/species correlations with associated particles produced in hadronization of reconstructed B_s^0 meson

CPPM - 2010-03-15

Mixing phase - fit overview

Mixing phase - Likelihood features

1 σ and 2 σ Likelihood contours in the ($\Delta\Gamma$, β s) plane.

Wild fluctuations. Likelihood has two minima – strongly non-Gaussian

Not reporting central values and their uncertainties. Use interval estimation (confidence regions) instead.

Mixing phase - Enforcing coverage

Standard likelihood ratio method fails

Remap observed $2\Delta \log L$ distribution to get coverage. Account for non-Gaussian Likelihood. E.g. to get the 95.5% CL, $2\Delta \log L \sim 9$ units (as opposed to 5.99 asymptotic)

Include systematics: vary nuisance parameters within 5σ of their estimates on data. Use worst case.

43/50

CPPM – 2010-03-15

Mixing phase – 2.8 fb⁻¹ results

2D projection of the confidence region from the space of all fit parameters.

A specific value of $\Delta\Gamma$ and β s is excluded only if it can be excluded <u>for</u> <u>any</u> assumed values of nuisance parameters (within 5 σ from observed values). PRL100, 161802(2008) topcite100+

1.8 σ from SM. Probability of observing a fluctuation as large or larger than observed in data is 7%

One dimensional: 0.28 < β s < 1.29 at 68% CL

www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged_BsJPsiPhi_update_prelim/

CPPM - 2010-03-15

Mixing phase: Tevatron combination

2.1 σ from SM. One-dimensional ranges:

 $0.27 < \beta s < 0.59 \text{ OR } 0.97 < \beta s < 1.30 \text{ at } 68\% \text{ CL}$

http://tevbwg.fnal.gov/results/Summer2009_betas/

CPPM – 2010-03-15

D. Tonelli, Fermilab

...some excitement...

If large phase confirmed - not only unambiguous signal of physics beyond SM, but also beyond MFV. Several speculations: non-abelian flavor symmetries, SUSY GUT, CKM non-unitarity....

Fourth family a nice example: SM *t*' quark with $0.3 - 1 \text{ TeV/c}^2$ mass

PRL 95, 141601 (2005)

PHYSICAL REVIEW LETTERS

week ending 30 SEPTEMBER 2005 46/50

Difference in B^+ and B^0 Direct *CP* Asymmetry as an Effect of a Fourth Generation

Wei-Shu Hou, Makiko Nagashima, and Andrea Soddu

Department of Physics, National Taiwan University, Taipei, Taiwan 106, Republic of China (Received 8 March 2005; revised manuscript received 20 June 2005; published 30 September 2005)

Direct *CP* violation in $B^0 \to K^+ \pi^-$ decay has emerged at the -10% level, but the asymmetry in $B^+ \to K^+ \pi^0$ mode is consistent with zero. This difference points towards possible new physics in the electroweak penguin operator. We point out that a sequential fourth generation, with sizable $V_{t's}^* V_{t'b}$ and near maximal phase, could be a natural cause. We use the perturbative QCD factorization approach for $B \to K\pi$ amplitudes. While the $B^0 \to K^+\pi^-$ mode is insensitive to t', we critically compare t' effects on direct *CP* violation in $B^+ \to K^+\pi^0$ with $b \to s\ell^+\ell^-$ and B_s mixing. If the $K^+\pi^0 - K^+\pi^-$ asymmetry difference persists, we predict $\sin 2\Phi_{B_s}$ to be negative.

CPPM – 2010-03-15

Mixing phase – 5 fb⁻¹ update coming soon

D. Tonelli, Fermilab

CPPM – 2010-03-15

<u>47/50</u>

Mixing phase – *upcoming update*

Up to a 15% non- ϕ KK component possible. May spoil β s result.

Open up *KK* window. Fit B^o_s mass to extract shape and size of combinatorial and B^o reflection. Fix them in a fit of the KK-mass where the ϕ and any non- ϕ contribution float. No indication of significant non- ϕ contributions.

CPPM - 2010-03-15

D. Tonelli, Fermilab

What next?

More than 10 fb⁻¹ of physics-quality data on tape by end of 2011, corresponding to 2.5-10x wrt what shown today

CPPM – 2010-03-15

D. Tonelli, Fermilab

Concluding remarks

Strange-bottom mesons: our last chance to circumvent flavor problem.

CDF at full steam with 3rd-generation analyses. Ultimate impact in B_s^0 .

 $B_s^0 \rightarrow \mu\mu$ keeps shrinking NP-allowed space.

Charmless B_s^0 decays - a plethora of measurements and a modelindependent test for non-SM physics.

Search for NP in B_s^0 mixing phase. Allowed space halved . Tantalizing fluctuation to large, non-SM values. Still modest (~2.2 σ) but stays there.

Only 10-40% of data expected by end of 2011 shown. Analyses continuously improved. Psychological advantage: lots of data, complex analyses already set up, all pressure is on CERN.

We are sitting on a goldmine of data. Doing our best to give hard time to LHC experiments for the next few years.

The CDF II detector

7 to 8 silicon layers 1.6 < r < 28 cm, |z| < 45 cm $|\eta| \le 2.0 \sigma(\text{hit}) \sim 15 \mu\text{m}$

Some resolutions: $p_T \sim 0.15\% p_T (c/GeV)$ J/Ψ mass ~14 MeV $IP \sim 40 \mu m$ (includes beam spot) 1.4 T magnetic field Lever arm 132 cm 132 ns front end chamber tracks at L1 silicon tracks at L2 25000 / 300 / 100 Hz with dead time < 5%

> time-of-flight 110 ps at 150 cm p, K, π identific. 2 σ at p_T <1.6 GeV

96 layer drift chamber $|\eta| \le 1.0$ 44 < r < 132 cm, |z| < 155 cm 30k channels, $\sigma(hit) \sim 140 \mu m$ dE/dx for *p*, *K*, π identification

μ coverage |η| ≤1.5 84% in φ

Mixing phase - *outlook*

% of CDF clones that would observe a 5 σ -effect, as a function of β s

Assumptions

 $\checkmark \Delta \Gamma_{\rm s} = 0.1 \text{ ps}^{-1}$

✓ Constant data-taking efficiency

✓ No analysis improvements.

 \checkmark No external constraints (A_{SL}, lifetimes) used.

CDF next future will probably be better than that.

CPPM - 2010-03-15

$B \rightarrow \mu^+ \mu^- - pre-selection$

$B \rightarrow \mu^+ \mu^- - Selection$

Selection based on following kinematics discriminating variables:

Transverse momentum of candidate $p_T^{\mu+\mu-}$ (>4GeV)

Transverse lower momentum of muon track p_T Proper decay time $\lambda = L_{3D} \times M_{\mu\mu} / |p^{\mu+\mu-}|$ Significance of proper decay time $\lambda / \sigma_{\lambda}$ (>2) 3D opening angle $\Delta \alpha$ (<0.7 rad) Isolation of B candidate I (>0.5)

$B \rightarrow \mu^+ \mu^- - NN$ validation

Detailed MC-data validation using control mode.

Need for isolation and momentum reweighing.

< 4% residual discrepancies

$B \rightarrow \mu^+\mu^- - background control$

		CM	U-CM	U	CMU-CMX			
ample	$NN \mathrm{cut}$	pred	obsv	$\operatorname{prob}(\%)$	pred	obsv	$\operatorname{prob}(\%$	
	$0.80 < \nu_{NN} < 0.95$	$275 \pm (9)$	287	26	$310 \pm (10)$	304	39	
OS-	$0.95 < \nu_{NN} < 0.995$	$122 \pm (6)$	121	46	$124 \pm (6)$	148	3.2	
	$0.995 < \nu_{NN} < 1.0$	$44 \pm (4)$	41	36	$31 \pm (3)$	50	0.4	
	$0.80 < \nu_{NN} < 0.95$	$2.7 \pm (0.9)$	1	29	$2.7 \pm (0.9)$	0	10	
SS+	$0.95 < \nu_{NN} < 0.995$	$1.2 \pm (0.6)$	0	34	$1.2 \pm (0.6)$	1	66	
	$0.995 < \nu_{NN} < 1.0$	$0.6 \pm (0.4)$	0	55	$0.0 \pm (0.0)$	0	-	
	$0.80 < \nu_{NN} < 0.95$	$8.7 \pm (1.6)$	9	49	$5.7 \pm (1.6)$	2	11	
SS-	$0.95 < \nu_{NN} < 0.995$	$3.0 \pm (1.0)$	4	36	$3.6 \pm (1.0)$	2	34	
	$0.995 < \nu_{NN} < 1.0$	$0.9 \pm (0.5)$	0	43	$0.3 \pm (0.3)$	0	70	
	$0.80 < \nu_{NN} < 0.95$	$169 \pm (7)$	169	50	$73 \pm (5)$	64	19	
FM+	$0.95 < \nu_{NN} < 0.995$	$55 \pm (4)$	43	9	$19 \pm (2)$	18	49	
	$0.995 < \nu_{NN} < 1.0$	$20 \pm (2)$	20	48	$3.6 \pm (1.0)$	3	53	

Predicted vs observed backgrounds in 4 control sample for 3 different NN cuts: 24 independent checks of bckg estimation method.

$B \rightarrow \mu^+ \mu^- - background control$

Combinatorics from linear fit to sidebands. Use exp for systematics.

$B \rightarrow \mu^+ \mu^- - results$

	Mass Bin (GeV)	5.310 - 5.334	5.334 - 5.358	5.358 - 5.382	5.382-5.406	5.406-5.430	Total
UU NN bin	Exp Bkg	9.66 ± 0.47	9.46 ± 0.46	9.27 ± 0.46	9.08 ± 0.46	8.88 ± 0.45	46.3 ± 2.4
0.80-0.95	Obs	7	5	10	5	5	32
UU NN bin	Exp Bkg	3.42 ± 0.27	3.33 ± 0.27	3.25 ± 0.27	3.17 ± 0.26	3.09 ± 0.26	16.2 ± 1.4
0.95 - 0.995	Obs	2	3	4	3	5	17
UU NN bin	Exp Bkg	0.869 ± 0.17	0.821 ± 0.18	0.783 ± 0.19	0.75 ± 0.19	0.717 ± 0.21	4.0 ± 1.0
0.995 - 1.0	Obs	0	1	2	0	0	3
UX NN bin	Exp Bkg	9.94 ± 0.48	9.8 ± 0.48	9.66 ± 0.48	9.51 ± 0.47	9.37 ± 0.47	48.3 ± 2.4
0.80 - 0.95	Obs	12	8	9	9	5	43
UX NN bin	Exp Bkg	3.5 ± 0.29	3.47 ± 0.29	3.43 ± 0.29	3.39 ± 0.29	3.36 ± 0.29	17.2 ± 1.4
0.95 - 0.995	Obs	3	4	3	7	0	17
UX NN bin	Exp Bkg	0.467 ± 0.14	0.438 ± 0.15	0.412 ± 0.15	0.387 ± 0.16	0.362 ± 0.16	2.08 ± 0.78
0.995 - 1.0	Obs	1	1	0	1	1	4

Table 10: B_s signal window for CMU-CMU(top) and CMU-CMX(bottom): Expected backgrounds, including $B \rightarrow hh$, and number of observed events

Mixing phase - B⁰ analogy

$B_{s}^{0} \rightarrow J/\psi\phi$ for sin(2 β s) $\Leftrightarrow B^{0} \rightarrow J/\psi K_{s}^{0}$ for sin(2 β)

Additional experimental complications:

- ✓ $J/\psi\phi$: a mix of CP-even and CP-odd eigenstates, treat them separately;
- ✓ B_s^0 oscillates ~35 times faster than B^0 ;
- \checkmark sin(2 β)~ 0.7, sin(2 β s) expected x20 smaller.

Mixing phase - an example of synergy

If large phase confirmed - not only unambiguous signal of physics beyond SM, but also beyond MFV. Several speculations: non-abelian flavor symmetries, SUSY GUT, CKM non-unitarity....

Fourth family a nice example: SM *t*' quark with $0.3 - 1 \text{ TeV/c}^2$ mass

PRL 95, 141601 (2005)

PHYSICAL REVIEW LETTERS

week ending 30 SEPTEMBER 2005 61/44

Difference in B^+ and B^0 Direct *CP* Asymmetry as an Effect of a Fourth Generation

Wei-Shu Hou, Makiko Nagashima, and Andrea Soddu

Department of Physics, National Taiwan University, Taipei, Taiwan 106, Republic of China (Received 8 March 2005; revised manuscript received 20 June 2005; published 30 September 2005)

Direct *CP* violation in $B^0 \to K^+ \pi^-$ decay has emerged at the -10% level, but the asymmetry in $B^+ \to K^+ \pi^0$ mode is consistent with zero. This difference points towards possible new physics in the electroweak penguin operator. We point out that a sequential fourth generation, with sizable $V_{t's}^* V_{t'b}$ and near maximal phase, could be a natural cause. We use the perturbative QCD factorization approach for $B \to K\pi$ amplitudes. While the $B^0 \to K^+\pi^-$ mode is insensitive to t', we critically compare t' effects on direct *CP* violation in $B^+ \to K^+\pi^0$ with $b \to s\ell^+\ell^-$ and B_s mixing. If the $K^+\pi^0 - K^+\pi^-$ asymmetry difference persists, we predict $\sin 2\Phi_{B_s}$ to be negative.

NIKHEF - June 9, 2009

Mixing phase - complementary to searches

NIKHEF - June 9, 2009

D. Tonelli, Fermilab

Mixing phase – other results

Assuming the SM, the probability of observing a fluctuation as large or larger than observed in data is 15% (1.5 σ)

One-dim: 0.16 < β s < 1.41 at 68% CL

Untagged CDF results (2.8/fb)

 $T(B_s^0) = 1.53 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst) ps}$

 $\Delta\Gamma = 0.02 \pm 0.05$ (stat) ± 0.01 (syst) ps⁻¹

D. Tonelli, Fermilab

$B^{0}_{(s)} \rightarrow h^{+}h'^{-}$ Next

5 fb⁻¹ analysis in progress \checkmark Observation of DCPV in B^0_s ? \checkmark DCPV in B^0 competitive with Belle. \checkmark Precision Br of rare modes. \checkmark Observe $B^0_s \rightarrow \pi^+\pi$?

CPPM – 2010-03-15

D. Tonelli, Fermilab

$B^{0}_{(s)} \rightarrow h^{+}h^{-} - PID$ calibration

dE/dx response <u>needs</u> accurate equalization over tracking volume and time.

Systematic variations are of same order as K/π separation

Not easy: many intercorrelated effects. Use D* tagged $D^0 \rightarrow K\pi$ decays.

NIKHEF - June 9, 2009

D. Tonelli, Fermilab

Kinematics at work

<u>66/51</u>

Data-driven checks

Angles

$$\begin{split} c\tau &= 456 \pm 6 \; (\text{stat}) \pm 6 \; (\text{syst}) \; \mu\text{m} \\ &| A_0(0) |^2 \; = 0.569 \pm 0.009 \; (\text{stat}) \pm 0.009 \; (\text{syst}) \\ &| A_{\parallel}(0) |^2 = 0.211 \pm 0.012 \; (\text{stat}) \pm 0.006 \; (\text{syst}) \\ &\delta_{\parallel} = -2.96 \pm 0.08 \; (\text{stat}) \pm 0.03 \; (\text{syst}) \\ &\delta_{\perp} = -2.97 \pm 0.06 \; (\text{stat}) \pm 0.01 \; (\text{syst}) \end{split}$$

Polarization of $B^0 \rightarrow \psi K^*$: <u>consistent</u> w/ B-factories

www-cdf.fnal.gov/physics/new/bottom/

070830.blessed-BdPsiKS/ CKM2008 - September 11, 2008

Measurement w/o flavor tagging: ΔΓs and тs

Flavor tagging

67/18

OST tuned on B^+

SST tuned on MC, checked on mixing measurement *a posteriori*

Neutral flavored mesons

Extremely rich phenomenology. (Approximated) time-evolution

$$i\frac{d}{dt} \begin{pmatrix} B_{s}^{0}(t) \\ \overline{B}_{s}^{0}(t) \end{pmatrix} = H \begin{pmatrix} B_{s}^{0}(t) \\ \overline{B}_{s}^{0}(t) \end{pmatrix} = \underbrace{\left[\begin{pmatrix} M_{0} & M_{12} \\ M_{12}^{*} & M_{0} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{0} & \Gamma_{12} \\ \Gamma_{12}^{*} & \Gamma_{0} \end{pmatrix}\right]}_{\text{decay matrix}} \begin{pmatrix} B_{s}^{0}(t) \\ \overline{B}_{s}^{0}(t) \end{pmatrix}$$

$$B_{s,H}^{0} \sim B_{s}^{0} - \overline{B}_{s}^{0}$$
Hamiltonian eigenstates (definite mass and lifetime) are mixtures of flavor eigenstates
$$B_{s,L}^{0} \sim B_{s}^{0} + \overline{B}_{s}^{0}$$
Experimentally accessible quantities
$$\Delta m_{s} = m_{H} - m_{L} \approx 2|M_{12}|$$
Oscillation frequency measured ~18 ps-1

Decay-width difference

CP-violating phase

measured ~5-15% x Г

???

 $\phi_s = \arg[-M_{12}/\Gamma_{12}]$

 $\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos(\phi_s)$

CKM2008 - September 11, 2008

D. Tonelli- Fermilab

eato

Φ s and β s are <u>not</u> the same phase

 $\beta_{\rm s} = \arg \left[- V_{\rm tb} V_{\rm ts}^* / V_{\rm cb} V_{\rm cs}^* \right] \sim 2.2^{\circ} \text{ (SM)}$

phase of $b \rightarrow ccs$ transition that accounts for decay and mixing+decay.

 $\Phi_{\rm s} = \arg[-M_{12}/\Gamma_{12}] \sim 0.24^{\circ} (\rm SM)$

 $arg[M_{12}]=arg(V_{tb}V_{ts}^*)^2$ matrix element that connects matter to antimatter through oscillation.

arg[Γ_{12}] = arg[$(V_{cb}V_{cs}^*)^2 + V_{cb}V_{cs}^*V_{ub}V_{us}^* + (V_{ub}V_{us}^*)^2$] width of matter and antimatter into common final states.

Both SM values are experimentally unaccessible by current experiments (assumed zero). If NP occurs in mixing:

$$\Phi_{\rm s} = \Phi_{\rm s}^{\rm SM} + \Phi_{\rm s}^{\rm NP}$$

$$2\beta s = 2\beta_s^{SM} - \Phi_s^{NP}$$

CKM2008 - September 11, 2008

 \rightarrow standard approximation: $\Phi_s = -2\beta_s$

Experimental requirements

CDF strengths.

Excellent vertexing to resolve fast oscillations (silicon detector) and momentum resolution for improving S/B (large radius drift chamber) immersed in 1.4 T B field. High muon acceptance (84% azimuthal at |eta| <1.5) and precise muon ID

70/18

Calorimeter for electron ID used in flavor tagging

dE/dx in drift chamber (1.5σ @p>2 GeV/c) and TOF (2σ @p<1.6 GeV/c) provide pion/kaon ID crucial in flavor tagging

Quality of the angular fit

71/18

CKM2008 - September 11, 2008

Cross-check sample

 $B^0 \rightarrow J/\psi K^{*0}$: high-statistics test of angular efficiencies and fitter

ANN removes K^{*0} mis-reconstructed with swapped $K\pi$ assignment

 $c\tau = 456 \pm 6 \text{ (stat)} \pm 6 \text{ (syst)} \ \mu\text{m}$ $|A_0(0)|^2 = 0.569 \pm 0.009 \text{ (stat)} \pm 0.009 \text{ (syst)}$ $|A_{\parallel}(0)|^2 = 0.211 \pm 0.012 \text{ (stat)} \pm 0.006 \text{ (syst)}$ $\delta_{\parallel} = -2.96 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$ $\delta_{\perp} = -2.97 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)}$

Agrees with latest Babar results. PRD 76,031102 (2007) Actually...competitive ;-) $|A_{0}(0)|^{2} = 0.556 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst)}$ $|A_{\parallel}(0)|^{2} = 0.211 \pm 0.010 \text{ (stat)} \pm 0.006 \text{ (syst)}$ $\delta_{\parallel} = -2.93 \pm 0.08 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $\delta_{\perp} = -2.91 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)}$
Tagging calibration and performance

CKM2008 - September 11, 2008

D. Tonelli- Fermilab

More on SST

Most Powerful Tagger:

Fragmentation Track

- Look for Kaon assoc. w/ B⁰_s production
- Use TOF & COT for πK separation

Calib using Monte Carlo

- B_s^0 , B_d^0 , B^+ different
- Use **PYTHIA** simulation

Performance

- Efficiency: $\varepsilon = 0.50 \pm 0.01$
- Avg Dilution: $D = 0.27 \pm 0.04$

More on OST

Exclusive algorithms:

Soft Lepton Tagger

- look for semileptonic B decay on OS
- lepton charge indicates b-flavor
- μ, e tagger

Jet Charge Tagger

- look for jet or secondary vertex on OS
- jet charge indicates *b*-flavor

Performance

- Efficiency: $\varepsilon = 0.96 \pm 0.01$
- Avg Dilution: $D = 0.11 \pm 0.02$

SST calibration

D. Tonelli- Fermilab

Angular model cross-check

Signal probability density

$$\begin{split} P_{s}(t,\vec{\rho},\xi|\mathcal{D},\sigma_{t}) &= \frac{1+\xi\mathcal{D}}{2}P(t,\vec{\rho}|\sigma_{t})\epsilon(\vec{\rho}) & \qquad \mathcal{B}^{\textit{0}}{}_{s}\,\text{term} \\ \\ \text{Flavor tagging} &= \frac{1-\xi\mathcal{D}}{2}\bar{P}(t,\vec{\rho}|\sigma_{t})\epsilon(\vec{\rho}), & \qquad \text{anti-}\mathcal{B}^{\textit{0}}{}_{s}\,\text{term} \end{split}$$

Angular sculpting from MC. Deviations from flat indicate detector effects.

Cross-checked in data (more later)

CKM2008 - September 11, 2008

D. Tonelli- Fermilab

Flavor-specific time evolutions

$$\frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{T}_+ f_2(\vec{\rho})$$

$$= \frac{B^0_s \text{ term}}{H_0|A_{\parallel}|^2 \mathcal{T}_- f_3(\vec{\rho}) + |A_{\parallel}||A_{\perp}|\mathcal{U}_+ f_4(\vec{\rho})}{H_0|A_{\parallel}|\cos(\delta_{\parallel})\mathcal{T}_+ f_5(\vec{\rho})} + |A_0||A_{\perp}|\mathcal{V}_+ f_6(\vec{\rho}),$$

$$= \frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{T}_+ f_2(\vec{\rho})$$

$$= \frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_3(\vec{\rho}) + |A_{\parallel}||A_{\perp}|\mathcal{U}_- f_4(\vec{\rho})$$

$$= \frac{f(\rho): \text{ angular distribution for a given polarization state}}{H_0||A_{\perp}|\mathcal{V}_- f_6(\vec{\rho})},$$

CKM2008 - September 11, 2008

D. Tonelli- Fermilab

CP-violating terms

$$\begin{aligned} \mathcal{T}_{\pm} &= e^{-\Gamma t} \times \left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta\Gamma t/2) \right] \\ &\mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \right], \\ \mathcal{U}_{\pm} &= \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) \right] \\ &- \cos(\delta_{\perp} - \delta_{\parallel}) \cos(2\beta_s) \sin(\Delta m_s t) \\ &\pm \left[\cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta\Gamma t/2) \right], \\ \mathcal{V}_{\pm} &= \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\Delta m_s t) \right] \\ &- \cos(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \\ &\pm \cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta\Gamma t/2) \right]. \end{aligned}$$

Knowledge of B^{0}_{s} mixing frequency needed

"Strong" phases: $\delta_{\perp} = \arg[A_{\perp}^*A_0], \delta_{\parallel} = \arg[A_{\parallel}^*A_0],$

CKM2008 - September 11, 2008

D. Tonelli- Fermilab

Dilution asymmetries

Insert an artificial 20% asymmetry in dilution between matter and antimatter and check the effect on confidence region

Contours: New vs "Old"

w/o tagging Likelihood gets
 sensitive to |sin2β_{s|} instead of
 sin2βs. Solutions increase 2→
 4 due to additional likelihood
 symmetries.

CKM2008 - September 11, 2008

Global fit

FIRST EVIDENCE OF NEW PHYSICS IN $b \leftrightarrow s$ TRANSITIONS (UTfit Collaboration)

We combine all the available experimental information on B_s mixing, including the very recent tagged analyses of $B_s \rightarrow J/\Psi\phi$ by the CDF and DØ collaborations. We find that the phase of the B_s mixing amplitude deviates more than 3σ from the Standard Model prediction. While no single measurement has a 3σ significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

Some caveats:

Do not account for non-Gaussian tails.

Some 'guesswork' to remove from D0 results the assumptions they put in.

I do not believe the 3σ significance figure is rigorously derived.

Arxiv:0803.0658v1[hep-ex] March, 5, 2008

CKM2008 - September 11, 2008

D. Tonelli- Fermilab