

The DORN^{*} experiment onboard Chang'E 6

First measurements of radon and polonium at the surface of the Moon

P.-Y. Meslin, H. He, K. W. Wong, V. Thomas, J.-P. Roques, L. Lavergne, Z. Kang, S. Zhang, B. Sabot, S. Pierre, J.C. Sabroux, J.-F. Pineau, F. Girault, I. Plotnikov, M. Blanc, O. Forni, S. Maurice, O. Gasnault, P. Pinet, J. Lasue, C. Koumeir, F. Haddad, F. Poirier, A. Guertin, V. Métivier, N. Servagent, N. Michel, R. Wimmer-Schweingruber, N. Yamashita.

(*) Detection of Outgassing RadoN, after Friedrich Dorn, who discovered ²²²Rn

Chinese Lunar Exploration Program

年前中国探月工程三步走 CLEP

Chang'E 6 mission

- Similar design as Chang'E 5
- First return sample mission from the Far Side of the Moon ($\sim 2 \text{ kg}$)
- Landing site : Apollo Crater, within the South Pole Aitken Basin (SPA), around 43°S
- I month mission (48 hours at the lunar surface)
- Launch : mid-2024

rocellarum

KRFEP Terrane

Felspathic

Highlands Terrane

SPA

First discovered and characterized by the Apollo missions

TABLE 1.	ABLE 1. Native Lunar Atmospheric Species: Abundances		
Species	Detection Method	Number Density, * cm^{-3}	
He	LACE mass spectroscopy	2×10^3 , 4×10^4 (day, night)	
Ar	LACE mass spectroscopy	1×10^5 , 4×10^4 (day, night)	
Rn	alpha particle spectroscopy	variable	
CH_4	LACE mass spectroscopy	1×10^4 (presunrise)	
N ₂	LACE mass spectroscopy	8×10^2 (presuntise)	
CŌ	LACE mass spectroscopy	1×10^3 (presuntise)	
CO ₂	LACE mass spectroscopy	1×10^3 (presuntise)	
Na	ground-based spectroscopy (5890 Å)	070	
Κ	ground-based spectroscopy (7699 Å)	017	

(Stern, 1999)

LACE = Lunar Atmospheric Composition Experiment - Apollo 17 (spectromètre de masse)

First discovered and characterized by the Apollo missions

TABLE 1. Native Lunar Atmospheric Species: Abundances			
Species	Detection Method	Number Density, * cm^{-3}	
He	LACE mass spectroscopy	2×10^3 , 4×10^4 (day, night)	
Ar	LACE mass spectroscopy	1×10^5 , 4×10^4 (day, night)	
Rn	alpha particle spectroscopy	variable	
CH_4	LACE mass spectroscopy	1×10^4 (presunrise)	
N ₂	LACE mass spectroscopy	8×10^2 (presuntise)	
CŌ	LACE mass spectroscopy	1×10^3 (presunrise)	
CO_2	LACE mass spectroscopy	1×10^3 (presunrise)	
Na	ground-based spectroscopy (5890 Å)	070	
Κ	ground-based spectroscopy (7699 Å)	017	

(Stern, 1999)

■ Rapid escape rate ⇒ rapid regeneration

LACE = Lunar Atmospheric Composition Experiment - Apollo 17 (spectromètre de masse) 5

First discovered and characterized by the Apollo missions

TABLE 1.	TABLE 1. Native Lunar Atmospheric Species: Abundances		
Species	Detection Method	Number Density, $* cm^{-3}$	
He	LACE mass spectroscopy	2×10^3 , 4×10^4 (day, night)	
Ar	LACE mass spectroscopy	1×10^5 , 4×10^4 (day, night)	
Rп	alpha particle spectroscopy	variable	
CH_4	LACE mass spectroscopy	1×10^4 (presunrise)	
N_2	LACE mass spectroscopy	8×10^2 (presuntise)	
CŌ	LACE mass spectroscopy	1×10^3 (presuntise)	
CO ₂	LACE mass spectroscopy	1×10^3 (presuntise)	
Na	ground-based spectroscopy (5890 Å)	070	
Κ	ground-based spectroscopy (7699 Å)	017	
		(Stern, 1999)	

- Rapid escape rate ⇒ rapid regeneration
- Possible origins :
 - Solar Wind (implantation + bakscattering) : He, H, Ar, Ne, C, N, ...
 - Solar Wind regolith interactions : Na, K, CH₄, H₂O, N₂, CO₂, ...
 - Micrometeorites : H₂O ?
 - Lunar outgassing: He, ⁴⁰Ar, Rn

LACE = Lunar Atmospheric Composition Experiment - Apollo 17 (spectromètre de masse)

First discovered and characterized by the Apollo missions

TABLE 1. Native Lunar Atmospheric Species: Abundances		
Species	Detection Method	Number Density, $* \text{ cm}^{-3}$
He	LACE mass spectroscopy	2×10^3 , 4×10^4 (day, night)
Ar	LACE mass spectroscopy	1×10^5 , 4×10^4 (day, night)
Rn	alpha particle spectroscopy	variable
CH_4	LACE mass spectroscopy	1×10^4 (presunrise)
N ₂	LACE mass spectroscopy	8×10^2 (presuntise)
CŌ	LACE mass spectroscopy	1×10^3 (presuntise)
CO ₂	LACE mass spectroscopy	1×10^3 (presuntise)
Na	ground-based spectroscopy (5890 Å)	070
Κ	ground-based spectroscopy (7699 Å)	017
		(Stern. 1999)

- Rapid escape rate ⇒ rapid regeneration
- Possible origins :
 - Solar Wind (implantation + bakscattering) : He, H, Ar, Ne, C, N, ...
 - Solar Wind regolith interactions : Na, K, CH₄, H₂O, N₂, CO₂, ...
 - Micrometeorites : H₂O ?
 - Lunar outgassing: He, ⁴⁰Ar, Rn

LACE = Lunar Atmospheric Composition Experiment - Apollo 17 (spectromètre de masse)

Fig. 3. Rates of supply and loss of 40 Ar during 1973 based on a 115-day mean residence time.

Triangular markers on the lower abscissa show occurrences of high-frequency teleseismic events (Nakamura et al., 1974).

9

Migration, trapping and accumulation of volatiles in the polar regions (e.g., water ice)

Moonquakes ?

11

Lunar outgassing

Α

0.045

0.03 0.02

Count/sec 0.03

Space and time variations of radon and polonium measured from the orbit, yet to be understood

Orbital measurements

Low sensitivity (> 7 Bq.m⁻²)

Α

Count/sec

Apollo 15 (APS) 1971 (~80 hours)

Apollo 16 (APS)

Lunar Prospector

Kaguya ARD 2007-2009

DORN on CE'6 will measure Radon and Polonium isotopes for the first time at the surface of the Moon, with high-sensitivity.

DORN sensitivity objective = 0.5 Bq.m-2 \Rightarrow Flux of radon of 1 atom.m⁻².s⁻¹

For reference:

- Earth (continents) ~ 7000 atoms.m⁻².s⁻¹
- Mercure ~ 250 atoms.m⁻².s⁻¹
- Mars ~ 250 atoms.m⁻².s⁻¹
- Apollo 15-16 ~ 50 atoms.m⁻².-s⁻¹ (?)
- Model (Moon) ~ 30 80 atoms.m⁻².-s⁻¹

Energy range of interest = [5 - 9 MeV]Energy range measured = [0.5 - 12 MeV]

Objectives of the DORN Experiment

- Study the origin and dynamics of the lunar exosphere
- Study the lunar outgassing and constrain the thermophysical properties of the regolith
- Constrain the rate/efficiency of dust lifting
- Provide ground-truth for past (and future?) orbital measurements of radon and polonium
- Improve orbital measurements of Uranium and Thorium

Comparison between the Moon and other planets (Earth, Mars, Mercury), where radon has been measured

Two complementary components to the DORN experiment

Measurements on the lunar surface in the SPA (< 48 h) + 60 h in orbit

Chang'E 6

Measurements on returned samples

Prof. He, Co-PI DORN with CE'5 capsule

Experimental setup developed at CEA Saclay to characterize the emanation and adsorption coefficients of lunar samples

Design of the DORN instrument

DORN Near Field

DORN Far Field

Surface only

(Lower background)

Surface + Sky

(Higher background)

Flux of alpha particles

Radiative background

Typical proton spectra

and the second sec

Design of the DORN instrument

4 Detection Units with 8 silicon detectors (5.3 cm², 300 μm thick for better energy resolution)

4 Detection Units with 8 silicon detectors (5.3 cm², 65 μm thick for better proton/alpha discrimination)

Background noise reduction

- Passive shielding for grazing protons (E₁ < 4 MeV)
- Anticoincidence for protons and alpha from rear

Design of the DORN instrument

Grid to filter EMC perturbations

- Deposited on silver-coated pellets
- For energy calibration and instrument monitoring (health-check, resolution)
- Emission (E = 4.88 MeV) below ROI
- Half-life = 115 years
- Activity ~ 30 Bq

Light sensitivity tests

- Silicon detectors will be used outdoor and exposed to sunlight (< 200 W.m⁻²)
- 300 nm of aluminum deposited on the detectors by Micron Semiconductor Ltd
- Leakage current measured with detectors exposed to sunlight spectrum with increasing light intensity (using LabSphere) => Flight Model detectors selection
- Effect on energy resolution measured

Design of the DORN instrument

Event processor

Arronax Characterization Campaign (May 2022)

- Characterization of the DU response to high energy protons and alpha particles in Arronax Cyclotron for different incidence angles
- Validation of the numerical (GEANT-4) model of the instrument
- Validation of the Event processor and A/C unit

Comparison experiment - simulation

Tests EMC

Tests mécaniques (vibs + chocs) (Avril 2023)

Début Avril : fin de l'assemblage du modèle de vol à l'IRAP

Tests de performance à l'IRAP

Tests environnementaux à l'IRAP et au CNES (Mai 2023)

Etapes suivantes :

- Livraison en Chine en Juillet
- Assemblage sur le lander Chang'E 6 en août 2023
- Envoi à Hainan ~ janvier 2024
 Décollage ~ mai 2024 _____25

