

- Intro HLL, projets actuels
- les principes des détecteurs à HLL
- Retouches des principes pxd
- Retouches des principes ccd
- Combinaison du sdd avec strips

Max-Planck Semiconductor Laboratory

Le bâtiment actuel à Neuperlach (Siemens)

~40 personnes travaillent actuellement à HLL.

Un atelier pour les experiences de la MPG et pour instituts extérieurs.

Le nouveau bâtiment à Garching (MPG) démenagement Nov 2023

wet chemistry

Simulation et design

 Water
 Image: Comparison of the comparison of th

production

Ion-implantation

thermal

Plasma

lithography

Couper + monter

+ nouveaux: CMP e⁻ beam litho

Utilisation terrestre

CCDs at FLASH

BELLE II Pixel Vertex Detector at KeK

LAMP CCDs at SLAC

TRISTAN: 3486 **Silicon Drift Detectors** for electron counting

Pixel Electron Imaging Sensor Edet 80k Framerate, 30µm

Utilisation en espace

F. Schopper "Les Détecteurs Semi-conducteurs dans l'espace", 5.7.2023

DepFET Pixel Matrix

ATHENA (ESA), prototype wide field Imager

lecture à plusieurs fois répétée sans détruire le signal

 amplifier 1
 amplifier 2

 cleargate 1
 p+ drain 1

 reargate 1
 transfer

 gate 1
 gate 2

 reargate 2
 r+ clear 2

 reargate 1
 transfer

 gate 1
 internal

 gate 1
 p-weil

 reargate 2
 p-weil

En mesurant la charge collectée plusieurs(n) fois, le "bruit effectif" est reduit par 1/n.

Published [preprint: scipost_202211_00018v2]

0.8412 0.84125 0.8413 0.84135 0.8414 0.84145 injection time [ms]

Folie 9

pn- Charge Coupled Device

F. Schopper NDIP . 4.7.2017

36 µm

Couplage capacitif de lignes MOS pour réduire la capacité entre registres.

JFETs plus petits capacité réduite, amplification grandie.

résolution de position

hit positions placed on 32x32 Subgrid

CCD pixels

σ=1.2μm

Folie 12

Distribution de charge sur pixels: "charge collection function"

Avec pixels de 36 µm, tous les évenements sont visibles dans plusieurs pixels.

Formation des Images Spectroscopiques

F. Schopper "Les Détecteurs Semi-conducteurs dans l'espace", 5.7.2023

La distribution du CoG est invertée et chaque évènement est repositionné

F. Schopper NDIP , 4.7.2017

Le nombre de pixels totalisés peut être réduit si l'on en connait la position de l'évenement

Silicon drift detector

F. Schopper NDIP , 4.7.2017

XETEX G-CH

Le plan pour rayures (strips):

Longeur: ~ 30 cm Largeur: ~ 1 mm

les Prototypes

TIGRE (2007) UCLA

Longuer: 20 cm

> 3 pF / cm > 10 nA / cm²

p-side: ~ 1500 e⁻ ENC N-side: ~ 3000 e⁻ ENC

ACT (2005) Naval Research Lab

Fig. J3. An 8-layer Si detector prototype array, consisting of 32 2-mm thick detectors, of area 6.3 cm \times 6.3 cm each

MEGA (2004), MPE Garching

Est-que c'est raisonnable de combiner les rayures de face p avec des sdds a la face n ?

Temps pour ramasser la charge dans les deux côtés

Utiliser les signaux des strips comme trigger (plus vite) et pour la position x. Utiliser les signaux de sdds pour la position y et l'énergie (capacité réduite).

design et fabrication d'un prototype à HLL

Connexion des cellules et prétension ("Biasing") des boucles

courant et capacité prognostiqué

Courant: ~ 0.15 nA/cm²

Production similaire mais sans segmentation de face arrière (sans rayures).

Capacité des anodes: 25 fF --- 0.2 pF / cm (sdds avec 1,2 mm diametre: 8 cellules /cm)

Capacité de lignes connectant les sdds:

Largeur W	Epaisseure H [µm]	C/cm [pF]
3 [µm]	0.55 (ε _{oxid} = 4)	3,3
3 [µm]	5 (ε _{всв} = 3)	0.55 pF/cm

nach https://technick.net/tools/impedance-calculator/microstrip-embed/

Fin

merci pour votre attention

F. Schopper "Les Détecteurs Semi-conducteurs dans l'espace", 5.7.2023