# BASKET

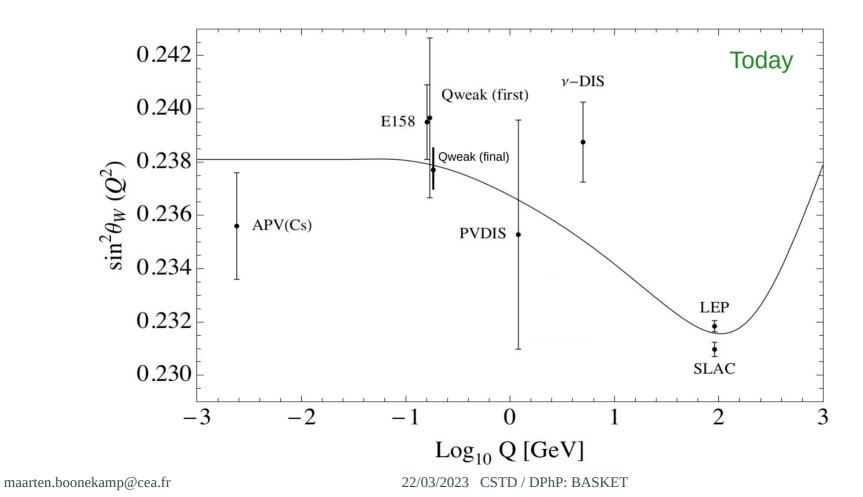
("Backward Scattering Electron Tracker")

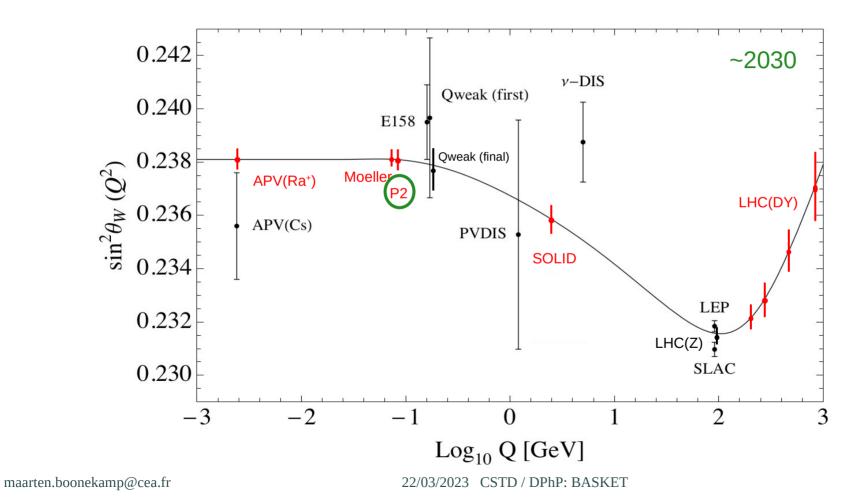
#### Parity violation in backward scattering and the weak mixing angle

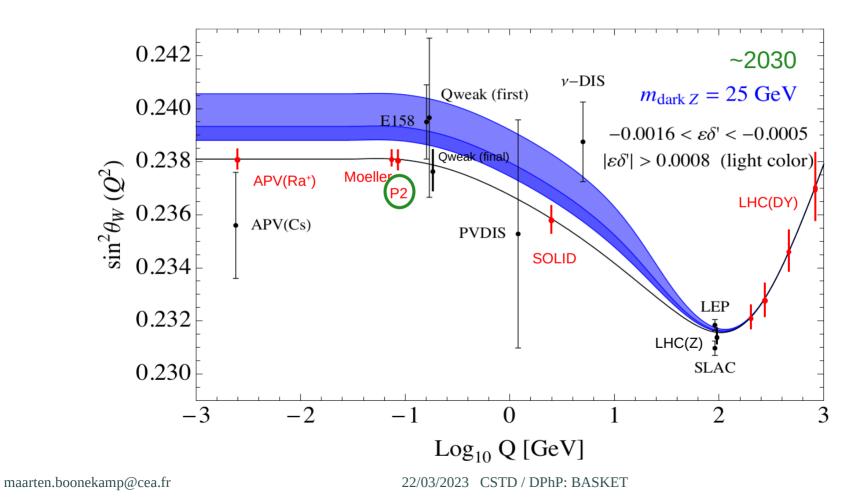
M.Boonekamp (DPhP), I.Mandjavidze, M.Vandenbroucke (DEDIP)

lots of help from P.-F. Giraud (DphP), C.Goblin, A.Bonenfant (DEDIP)

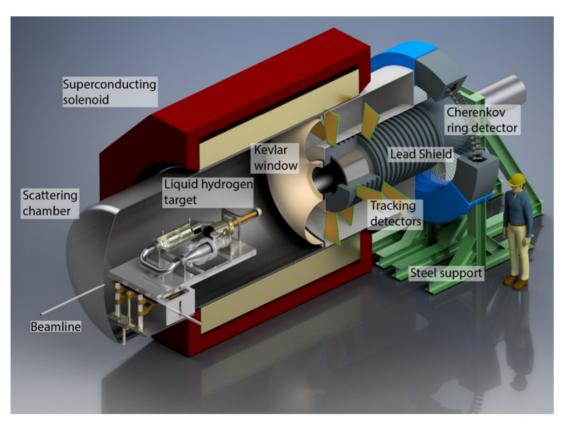
in collaboration with S.Baunack, B.Glaser, F.Maas, M.Wilfert et al. (Mainz)


maarten.boonekamp@cea.fr


22/03/2023 CSTD / DPhP: BASKET

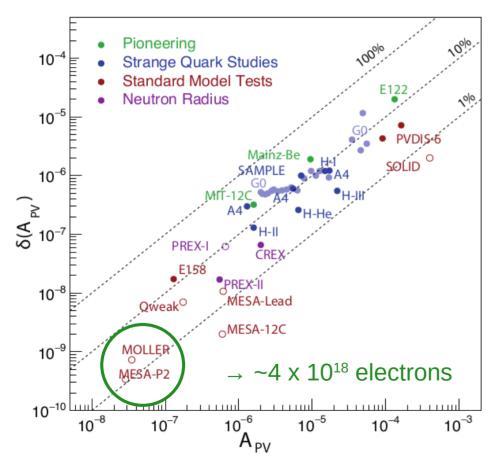

1

- The angle that defines the physical photon and the 7: 80.5 M<sub>w</sub> [GeV] 68% and 95% CL contours direct M<sub>u</sub>, and  $\sin^2(\theta_{1}^{\dagger})$  measurements  $\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \end{pmatrix}$ fit w/o  $M_w$ , sin<sup>2</sup>( $\theta_{eff}^{f}$ ) and Z widths measurements fit w/o  $M_{uv}$ , sin<sup>2</sup>( $\theta_{off}^{T}$ ) and M measurements 80.45 fit w/o  $M_{w}$ , sin<sup>2</sup> ( $\theta_{aff}^{\dagger}$ ), M and Z widths measurements Defines the ratio of the W and Z masses 80.4  $\cos^2\theta_W = \frac{M_W}{M_Z}$  $M_w = 80.379 \pm 0.013$  GeV 80.35 and the couplings of the Z to fermions:  $\sin^2(\theta_{att}^{f}) = 0.23153$ G fitter +0.00016 $c_V = T_3 - 2 \cdot Q \cdot \sin^2 \theta_W, \qquad c_A = T_3$ 80.3 0.231 0.2315 0.232  $sin^{2}(\theta_{aff}^{I})$ 
  - → can be tested in collisions at the Z pole (forward/backward [LEP], left/right asymmetries [SLC]), and in polarized electron scattering at low energy


maarten.boonekamp@cea.fr








• Project in construction (Mainz):



| $E_{ m beam}$                                                               | $155\mathrm{MeV}$                   |  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| $ar{	heta}_{ m f}$                                                          | $35^{\circ}$                        |  |  |  |  |  |
| $\delta 	heta_{ m f}$                                                       | $20^{\circ}$                        |  |  |  |  |  |
| $\langle Q^2 \rangle_{L=600\mathrm{mm},\ \delta\theta_\mathrm{f}=20^\circ}$ | $6\times 10^{-3}({\rm GeV/c})^2$    |  |  |  |  |  |
| $\langle A^{\exp} \rangle$                                                  | $-39.94\mathrm{ppb}$                |  |  |  |  |  |
| $(\Delta A^{ m exp})_{ m Total}$                                            | $0.56\mathrm{ppb}~(1.40\%)$         |  |  |  |  |  |
| $(\Delta A^{\mathrm{exp}})_{\mathrm{Statistics}}$                           | 0.51  ppb  (1.28  %)                |  |  |  |  |  |
| $(\Delta A^{\mathrm{exp}})_{\mathrm{Polarization}}$                         | $0.21{ m ppb}(0.53\%)$              |  |  |  |  |  |
| $(\Delta A^{ m exp})_{ m Apparative}$                                       | $0.10{\rm ppb}~(0.25\%)$            |  |  |  |  |  |
| $\langle s_{ m W}^2  angle$                                                 | 0.23116                             |  |  |  |  |  |
| $(\Delta s_{ m W}^2)_{ m Total}$                                            | $3.3 \times 10^{-4} \ (0.14 \ \%)$  |  |  |  |  |  |
| Beam current 150 $\mu$ A pol. 85% LH <sub>2</sub> target, 60 cm             |                                     |  |  |  |  |  |
| → L = 2.4 1                                                                 | 0 <sup>39</sup> /cm <sup>2</sup> /s |  |  |  |  |  |

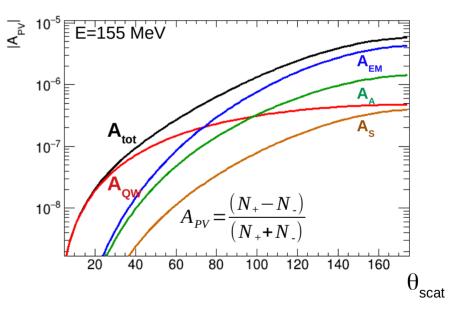
maarten.boonekamp@cea.fr



| $E_{ m beam}$                                                               | $155{ m MeV}$                      |
|-----------------------------------------------------------------------------|------------------------------------|
| $ar{	heta}_{ m f}$                                                          | $35^{\circ}$                       |
| $\delta 	heta_{ m f}$                                                       | $20^{\circ}$                       |
| $\langle Q^2 \rangle_{L=600\mathrm{mm},\ \delta\theta_\mathrm{f}=20^\circ}$ | $6\times 10^{-3}({\rm GeV/c})^2$   |
| $\langle A^{\exp} \rangle$                                                  | $-39.94\mathrm{ppb}$               |
| $(\Delta A^{ m exp})_{ m Total}$                                            | $0.56  \mathrm{ppb}  (1.40  \%)$   |
| $(\varDelta A^{ m exp})_{ m Statistics}$                                    | $0.51{ m ppb}(1.28\%)$             |
| $(\Delta A^{\exp})_{ m Polarization}$                                       | $0.21{ m ppb}~(0.53\%)$            |
| $(\Delta A^{ m exp})_{ m Apparative}$                                       | $0.10{\rm ppb}~(0.25\%)$           |
| $\langle s_{ m W}^2  angle$                                                 | 0.23116                            |
| $(\varDelta s_{ m W}^2)_{ m Total}$                                         | $3.3 \times 10^{-4} \ (0.14 \ \%)$ |

Beam current 150  $\mu$ A pol. 85% LH<sub>2</sub> target, 60 cm

 $\rightarrow$  L = 2.4 10<sup>39</sup> /cm<sup>2</sup>/s


maarten.boonekamp@cea.fr

- Parity-violating asymmetries, the weak mixing angle, and the proton form factors
- Measurement :

 $A_{PV}^{\exp} = \frac{N^+ - N^-}{N^+ + N^-}$ 

• Prediction:

$$A_{PV} = \frac{-G_F Q^2}{4\pi\alpha_{em}\sqrt{2}} \left[ Q_W^p - F(Q^2) \right]$$
$$Q_W^p = 1 - 4\sin\theta_W.$$
$$F(Q^2) = F_{EM}(Q^2) + F_A(Q^2) + F_S(Q^2)$$

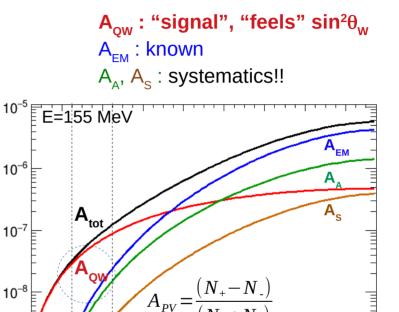


maarten.boonekamp@cea.fr

APV

10

10-7


Forward

Detector

Beam dump

P2 – Forward-angle measurement : ۲

Proton target



 $25 < \theta < 45 \, \text{deg.}$ Total signal rate ~ 100 GHz  $\rightarrow$  integrating detectors  $\rightarrow$  ~10000 hours; ~4x10<sup>18</sup> electrons

Fwd. detector (signal)

40

60

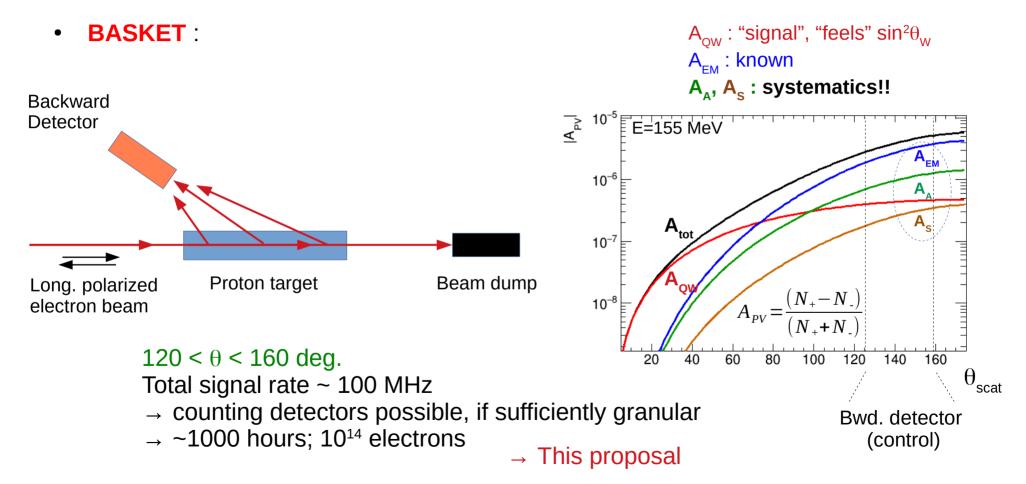
80

100

120

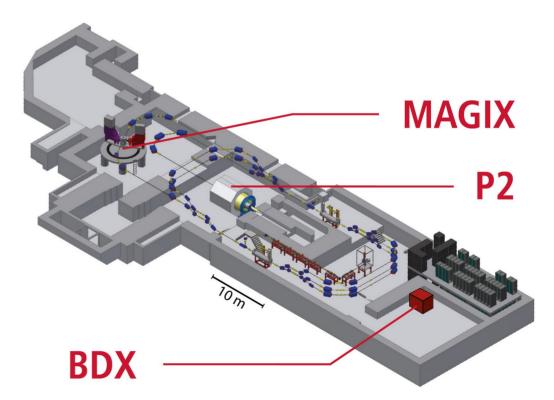
140

160

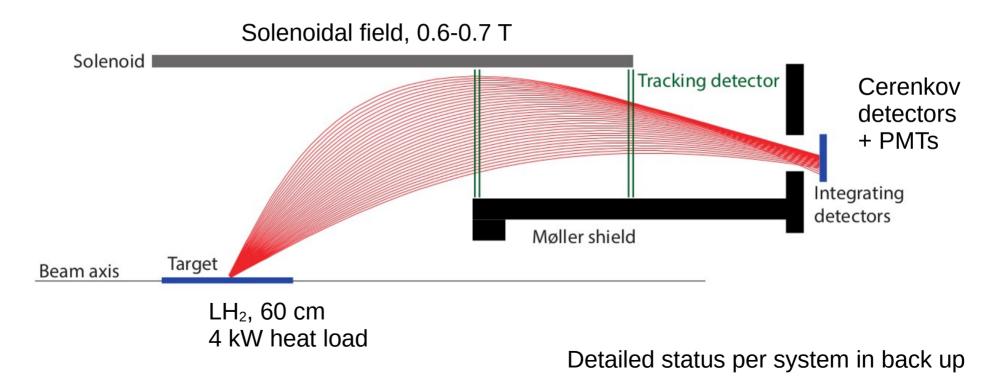

Н

scat

20


Long. polarized

electron beam

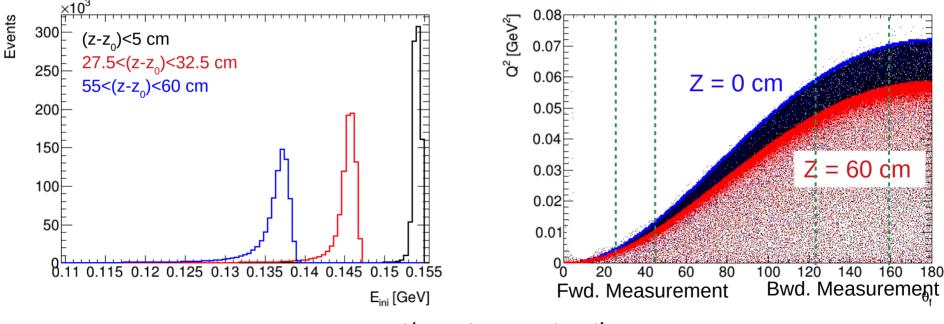



### MESA

- In construction; commissioning 2025 (55 MeV), 2026 (155 MeV)
  - 5 MeV (injection) + 3 x 50 MeV
  - ERL (Magix) or extracted beam (P2)
  - 5000 hours live time / year;
     4000 hours to experiments;
     ~2500 hours for P2
  - Polarized (85% +/- 0.5%);
     polarity flipped every 1 ms

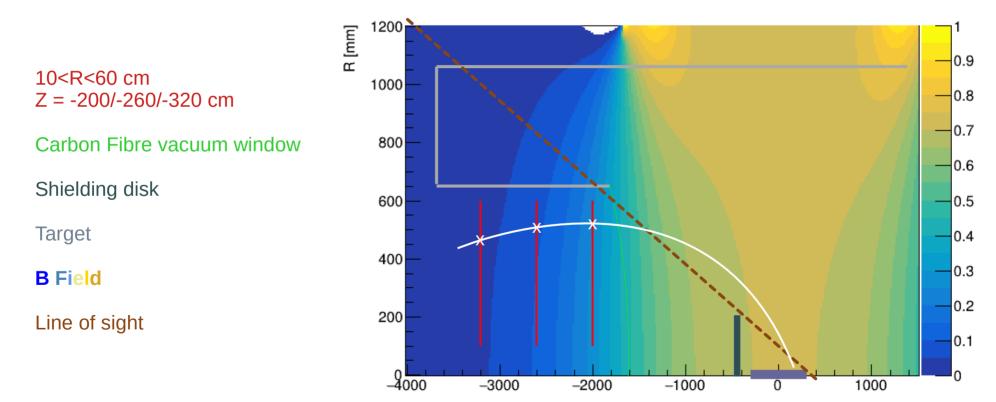


#### • Overview




maarten.boonekamp@cea.fr

- General considerations, assuming an overall signal rate of ~100 MHz
  - Physics opportunities
    - Hydrogen, Deuterium, Carbon , Lead targets
    - Very precise (<1%) determination of  $F_A(\theta, Q^2)$
    - **Required** to achieve the advertised precision in  $sin^2\theta_W$
    - Derived applications : atomic "neutron skin" and neutron stars; (coherent) neutrino scattering
  - Why a dedicated tracker technology?
    - Forward tracker optimised for high rates: small strips; large number of channels and data throughput; very partial azimuthal coverage  $\rightarrow$  expensive solution (~1M // module)
    - Backward-angle measurements require full azimuthal coverage; pads of 1-2 cm<sup>2</sup> are sufficient to achieve ~20 kHz rates and adequate resolution
      - $\rightarrow$  Micromegas known to function in such conditions


- General considerations, assuming an overall signal rate of ~100 MHz
  - Event-by-event track reconstruction possible, with many advantages
    - (1/p,  $\theta$ ,  $\phi$ , z<sub>0</sub>) vs integrated signal current
      - $\rightarrow$  Background control
      - $\rightarrow$  Monitor energy loss fluctuations in the target
    - A dynamical measurement : Form factors vs  $\theta$ ,  $Q^2$
  - Track reconstruction requires sufficient Field integral, between target and detector.
    - Hardly any field seen in nominal target position
      - $\rightarrow$  target moved downstream, inside vacuum chamber
      - $\rightarrow$  optimised detector position
    - Low-energy electrons  $\rightarrow$  thin detectors (<0.5% X<sub>0</sub>)

- General considerations, assuming an overall signal rate of ~100 MHz
  - $A_{PV} \sim Q^2 \cdot Q_w^{\rho}$ : accurate knowledge of momentum transfer needed, or we mis-interpret  $A_{PV}$  !

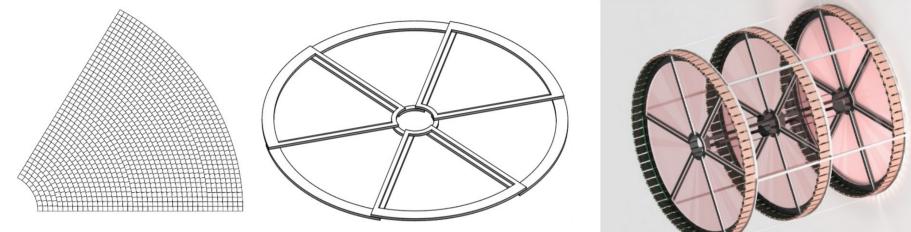


→ event/event reconstruction

• Overall geometry (sketch):

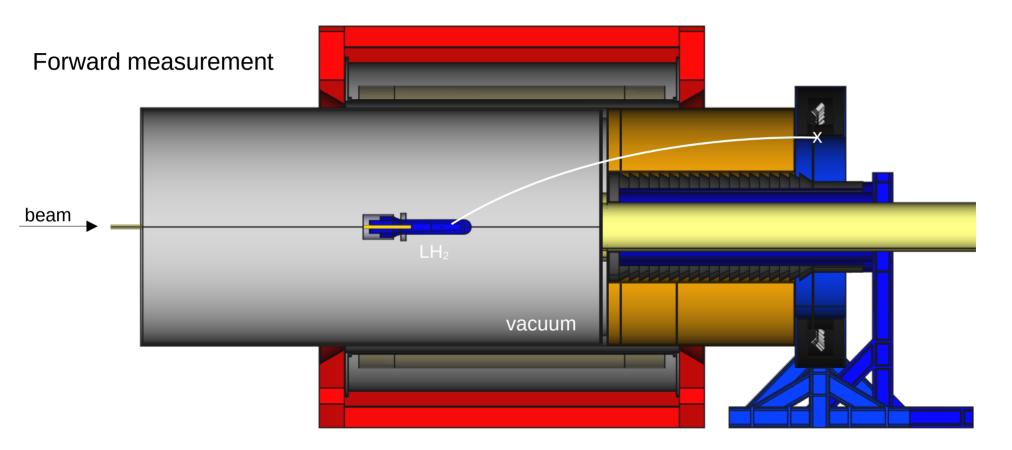


- Module design:
  - CLAS12 material budget & Geant4 implementation (credits F.Bossu):

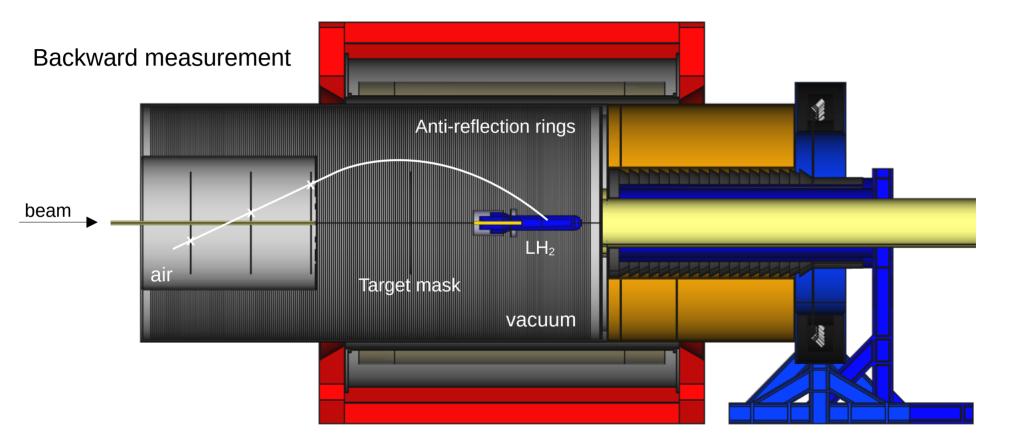

|                |               | Matière        | X0 (g/cm²) | Densité<br>(g/cm3) | Epaisseur<br>(µm) | Epaisseur<br>(cm) | 1-<br>Transparenc<br>e<br>("opacité") | X0 (cm)    | x/X0     |
|----------------|---------------|----------------|------------|--------------------|-------------------|-------------------|---------------------------------------|------------|----------|
|                | Тор           | Cuivre         | 12.86      | 8.96               | 5                 | 0.0005            | 0.1                                   | 1.435      | 3.48E-05 |
| Dérive         | PCB           | Kapton         | 40.56      | 1.42               | 300               | 0.03              | 1                                     | 28.563     | 1.05E-03 |
|                | Bottom        | Cuivre         | 12.86      | 8.96               | 5                 | 0.0005            | 0.2                                   | 1.435      | 6.97E-05 |
| Mesh           | 56/16         | Inox           | 14         | 7.93               | 30                | 0.003             | 0.395                                 | 1.765      | 6.71E-04 |
| Photoimageable |               | Pyralux        |            |                    | 196               | 0.0196            | 0.005                                 | 35.700     | 2.75E-06 |
|                | Pistes Resist | Carbone        | 42.7       | 2.0                | 35                | 0.0035            | 0.55                                  | 21.350     | 9.02E-05 |
|                |               | Epoxy          |            |                    | 35                | 0.0035            | 0.45                                  | 32.5       | 4.85E-05 |
| PCB détecteur  | Resist PCB    | Epoxy          |            |                    | 70                | 0.007             | 0.45                                  | 32.5       | 9.69E-05 |
|                |               | Fibre de verre | 25.8       | 2.4                | 70                | 0.007             | 0.55                                  | 10.750     | 3.58E-04 |
|                | Тор           | Cuivre         | 12.86      | 8.96               | 12                | 0.0012            | 0.8                                   | 1.435      | 6.69E-04 |
|                | РСВ           | Epoxy          |            |                    | 100               | 0.01              | 0.45                                  | 32.5       | 1.38E-04 |
|                |               | Fibre de verre | 25.8       | 2.4                | 100               | 0.01              | 0.55                                  | 10.750     | 5.12E-04 |
|                | Bottom        | Cuivre         | 12.86      | 8.96               | 12                | 0.0012            | 0.2                                   | 1.435      | 1.67E-04 |
|                | Coverlay      | ???            |            |                    | 50                | 0.005             | 1                                     | 35.700     | 1.40E-04 |
|                |               |                |            |                    |                   |                   |                                       | Total x/X0 | 4.05E-03 |

| Carbon fibre:         | 0.10 µm     |  |
|-----------------------|-------------|--|
| Copper:               | 0.41 μm     |  |
| Kapton:               | 250.00 µm   |  |
| Copper:               | 5.00 µm     |  |
| Gas:                  | 3000.00 µm  |  |
| Mesh:                 | 18.00 µm    |  |
| Gas:                  | 20.00 µm    |  |
| <b>Resistive</b> Past | e: 20.00 µm |  |
| Kapton:               | 75.00 μm    |  |
| Copper:               | 25.00 µm    |  |
| FR4:                  | 100.00 µm   |  |
| Copper:               | 1.58 µm     |  |
| Kapton:               | 50.00 µm    |  |
| Carbon fibre:         | 0.10 µm     |  |

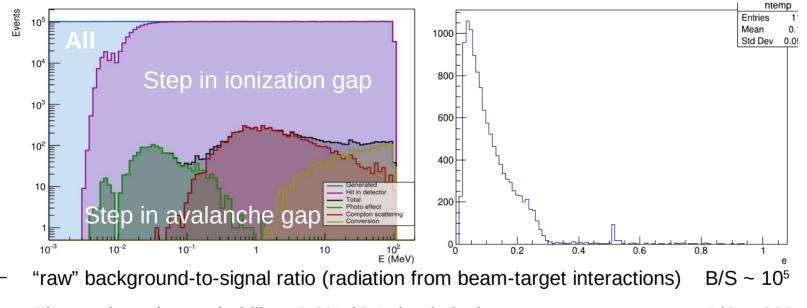



#### $\rightarrow$ total of ~0.4% X<sub>0</sub> per plane.

• Module design and assembly:




- Signal rates
  - Full acceptance ~ 100 MHz,  $\Delta t_{all}$  ~ 10 ns
    - signal ~85 MHz + 20% margin; beam current can be adjusted
  - Each pad sees ~14 kHz,  $\Delta t_{pad}$  ~ 70  $\mu$ s
    - Time resolution ~20-30 ns important to reject background or accidental coincidences


P2



#### P2 + BASKET



Background rates



- Photon detection probability ~0.2% (G4 simulation)
   B/S ~ 200
- Shielding
- Ongoing validation with sources : Fe-55 (6 keV), Am-241 (59 keV), Co-57 (122 keV)

maarten.boonekamp@cea.fr

•

22/03/2023 CSTD / DPhP: BASKET

B/S ~ 0.05

- Resolution
  - Complete Geant4 simulation of the experiment
  - Track fits using software infrastructure by P-F Giraud <sup>®™</sup>

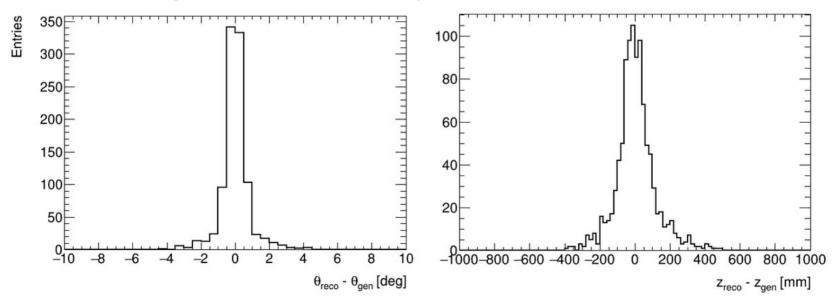



Figure 6 : Left : Scattering angle resolution, in degrees. Right : vertex position resolution, in mm.

• Physics – Hydrogen

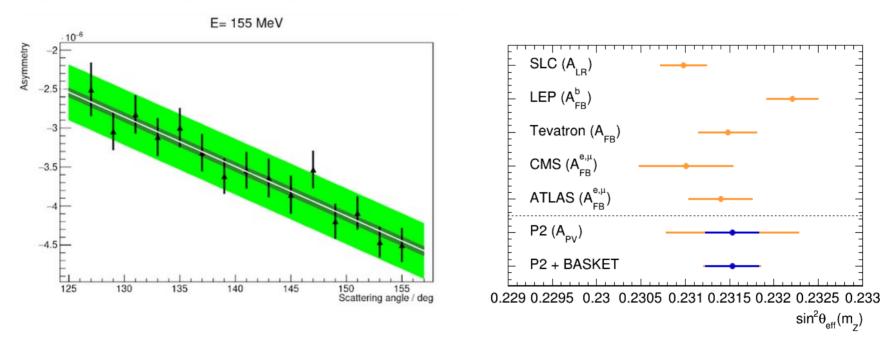
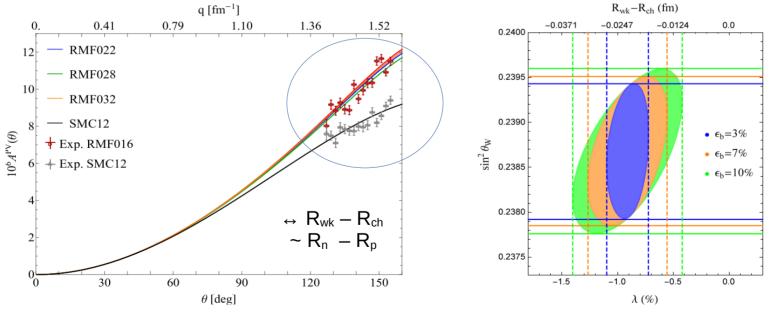
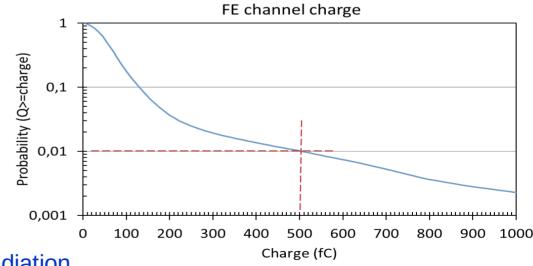




Figure 7 : Left :  $A_{PV}$  as a function of scattering angle. The line and outer envelope are the theoretical prediction and its present uncertainty. The points are simulated data. The inner band incorporates the measurement results. Right : achievable precision in  $\sin^2\theta_W(m_z)$ , with and without BASKET.

maarten.boonekamp@cea.fr


- Physics  ${}^{12}C$ 
  - Z=N=6; 0<sup>+</sup> : simple nucleus, parameterized in terms of a single form factor
  - $Q_w(^{12}C) = -24 \sin^2\theta_w$ : large asymmetries!
  - $sin^2\theta_w$  and the "neutron skin" why don't neutron stars collapse into black holes?



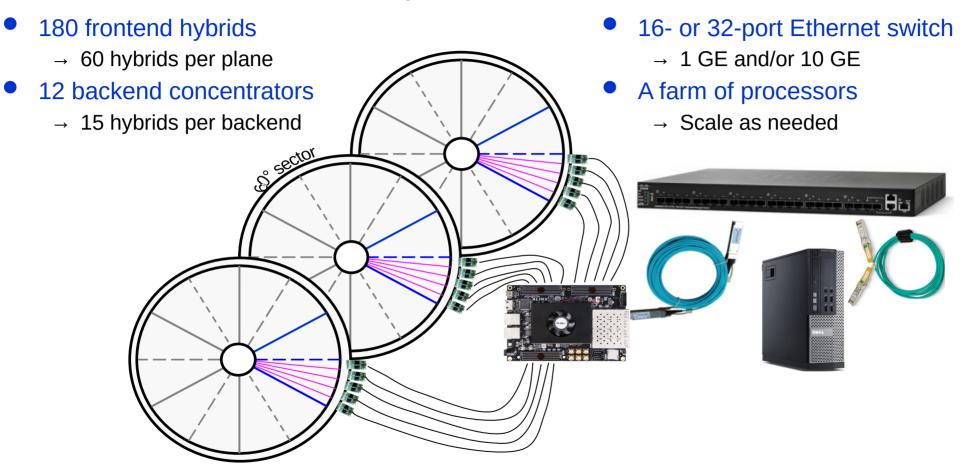
maarten.boonekamp@cea.fr

#### Readout : working hypotheses

- Physics: 100 MHz of tracks
- Tracker: 3 layers with total channel number of ~23k
  - $\rightarrow$  7 680 pads per layer
  - $\rightarrow$  Particle rate per pad < 20 kHz; multiplicity close to 1
- Readout
  - $\rightarrow$  No trigger, streaming readout with time-amplitude extraction at frontend
  - $\rightarrow\,$  No events, data records formed by frontends are associated by timestamps
- Timing precision: ~20-30 ns
- Channel dynamic range: 10-bits
  - $\rightarrow$  Signal of ~20 fC
    - With modest detector gain of 5 000
    - With 80% charge collection efficiency
  - $\rightarrow$  Signal to noise ratio of 40
    - Effective noise charge: ~3 000 e<sup>-</sup>
  - $\rightarrow~$  Saturation to signal ratio of 25
    - 1% probability of signal > 500 fC
- Low residual magnetic field < 0.1 T ; no radiation</p>



#### Pragmatic approach


50

114

- Build a readout based on the existing frontends and on the COTS components
  - $\rightarrow~$  Stringent planning with first data taking already in 2025
  - $\rightarrow$  Tense situation with availability of electronics components
- Survey of performance, availability and cost within the community and on market
- Frontend: SRS 128-channel VMM-based hybrid
  - → Hosts two VMM3a ASICs (Atlas NSW)
    - Flexible very-frontend with large choice in gain and shaping
    - Streaming and triggered readout
    - 400 Mbit/s link per VMM chip
    - Promise of 2.5 ns timing resolution
  - $\rightarrow~$  Production of 200 hybrids in 1.5 years by SRS Technology
- Backend: AXKU040 development board
  - → Hosts Xilinx Kintex UltraScale FPGA XCKU040
    - ~0.5M flip-flops; 21 Mbit RAM; 2k DSPs; ~500 IO
  - $\rightarrow$  4 Gbyte DDR4 memory
  - $\rightarrow$  10 Gbit/s and 1 GE interfaces
  - $\rightarrow\,$  3 mezzanine connectors; can aggregate up to 16 frontends
  - $\rightarrow~$  Offer from Alinx Electronic Technology for 15 units

165

#### System: the scale



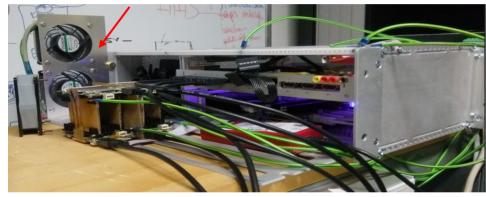
#### • Full validation possible in a pilot run populating only one projective sector (1/6)

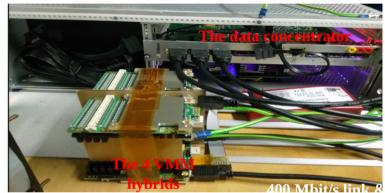
#### System: the data

- A frontend hybrid
  - $\rightarrow$  Raw data: ~120 Mbit/s
    - 20% of output link bandwidth
- Backend concentrator
  - $\rightarrow$  Raw data: ~1.5 Gbit/s
    - Requires one 10 Gbit/s Ethernet link: 20% load
    - Requires a high-end 16- or 24-port 10 GB Ethernet switch
    - Performant farm of 4-8 PCs
  - → On-line hardware tracking: 0.7 Mbit/s
    - Requires two 1 Gbit/s Ethernet links: ~50% load per link
    - Requires a 32-port middle-end mixed 1 GB / 10 GB Ethernet switch
    - A farm of 4-8 PCs with 10 GB Ethernet interfaces
  - $\rightarrow$  On-line histogram calculation in hardware: expected to be low
    - Single 1 Gbit/s Ethernet link
    - Requires 16-port Ethernet switch

#### System

High level synthesis


 $\rightarrow$  Raw data: 2.4 Gbyte/s ; 8.5 Pbyte of cumulated data over 1 000 h of data taking

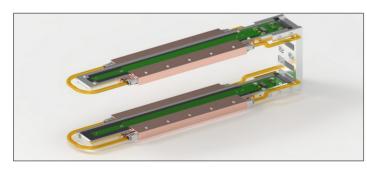




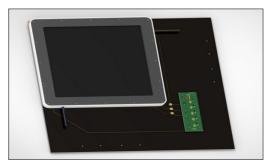

#### **On-going validation**

- A small SRS system acquired with 4 128-channel VMM-based hybrids
  - $\rightarrow$  Deployment of data acquisition software on-going
  - $\rightarrow$  "A cool system-D" arrangement while waiting for beam-test "Pro" mechanics

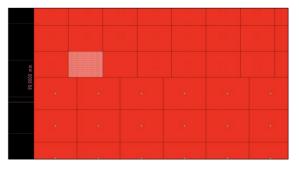





#### Performance tests


- $\rightarrow$  Synchronous generation of signal pulses exceeding threshold
  - Internal pulsing at ~20 kHz / channel rate
- $\rightarrow$  Sustained rate of ~2.7 Mhits/s per hybrid observed
  - ~130 Mbit/s throughput towards the acquisition PC (~48 bits / hit / channel including SRS data collection protocol)
- $\rightarrow$  Data quality under study
- $\rightarrow$  Encouraging, but high rate operation with poissonian hit arrivals needs to be validated

# P2 / EIC Test Beam à MAMI 6-12 Juin 2023


- Prototype "RD4" avec readout modulaire pour tester le motif de lecture pixel P2 et strips 2D pour EIC
- Minimal material budget : "sail tracker" à la P2. R&D for resistive layer ongoing
  - $\rightarrow$  tests multiplicity; position resolution
- Tests et comparaison de VMM, SAMPA, DREAM en test beams
  - $\rightarrow$  Physics rates up to ~1MHz in P2-like conditions ("continuous beam")



Precision tracker



RD4 detector



P2 pixel readout

Maarten.boonekamp@cea.fr

# Timelines

#### • MESA & P2

| Time             | 2023 |                       | 2024                                |                                 | 2025                 |                       | 2026             |                       |
|------------------|------|-----------------------|-------------------------------------|---------------------------------|----------------------|-----------------------|------------------|-----------------------|
| Experiment       | S1   | S2                    | S1                                  | S2                              | S1                   | S2                    | S1               | S2                    |
| MESA             |      |                       | Injector<br>E=5 MeV                 | Main<br>accel.                  | 55 MeV<br>Comm. Data |                       | 155 MeV<br>Comm. | ,<br>Data             |
| <b>P2</b> – Main |      | Solenoid<br>delivered | Nominal<br>vacuum<br>chamber        | Target;<br>Cerenkov;<br>Readout | Comm.                | Pilot run<br>(55 MeV) | Comm.            | Main run<br>(155 MeV) |
| P2 - Basket      |      | Design                | <- Construction -><br>Commissioning |                                 |                      |                       | Exploitatio      | on                    |

- 155 MeV, backward measurement : T4, 2026
- 155 MeV, forward measurement : 2027++

# Timelines

#### • BASKET

| Time                   | 2023                          |                                       | 2024                       |                                 | 2025     |                                          | 2026         |                    |              |  |
|------------------------|-------------------------------|---------------------------------------|----------------------------|---------------------------------|----------|------------------------------------------|--------------|--------------------|--------------|--|
| Experiment             | S1                            | S2                                    | S1                         | S2                              | S1       |                                          | S2           | S1                 | S2           |  |
| P2 Infra-<br>structure |                               |                                       |                            | Modified<br>endcap<br>Shielding |          |                                          |              |                    |              |  |
| Detector               |                               |                                       |                            |                                 |          |                                          |              |                    |              |  |
| Mechanics 👻            | Design &                      | & procurement Assembly                |                            |                                 |          |                                          |              |                    |              |  |
| Micromegas             | Design<br>Prototypes<br>Tests |                                       | Layer 1<br>ready           | Layer 2<br>ready                | re<br>Co | Layer 3<br>ready E<br>Commis<br>-sioning |              | Exploitatio        | Exploitation |  |
| Readout                |                               |                                       |                            |                                 |          | 55 MeV<br>Pilot rur                      |              | 155 MeV<br>Physics |              |  |
| Frontend               | ASIC/FE<br>Validation         | ASIC<br>procurement                   | FE board Tests procurement |                                 |          |                                          |              |                    |              |  |
| Back-end               | Choice &<br>Validation        | procurement                           | Hw/Fw/Sw adapt             |                                 |          | Tests                                    | Exploitation |                    |              |  |
| Services               |                               | Cooling / cabling / grounding In situ |                            |                                 |          |                                          |              |                    |              |  |

up to 2+2 FTE during this period

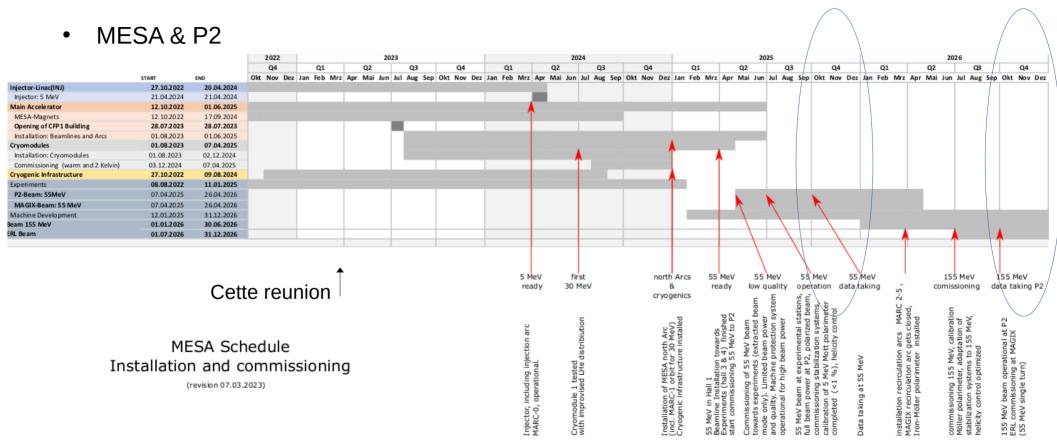
# Budget (all costs updated recently; includes spares)

#### • Detector : 291 kE

- 156 kEur for micromegas detector modules (6 sextants in three planes, plus 4 prototypes and 4 spares, for a cost of 6 kEur each);
- 70 kEur for the design and construction of the mechanical support;
- 40 kEur for the gas system (mixing, distribution, safety);
- 25 kEur for the high voltage supply (crates, cables, modules).

#### Readout : 275 kE

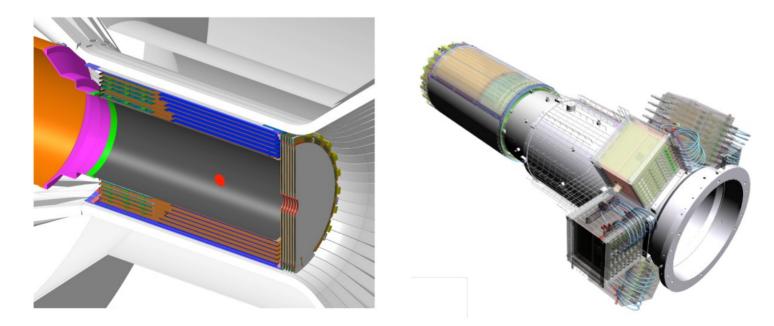
- 25 kEur for 500 VMM read-out ASICs;
- 140 kEur for 200 packaged front-end cards (2 ASICs or 128 channels each);
- 30 kEur for 15 back-end cards and their adapters;
- 20 kEur for detector, front-end and back-end cables;
- 30 kEur for ethernet switches and DAQ PCs;
- 30 kEur for power supply, cooling and mechanics.
- P2 Environment (modified end flange, shielding) : 75 + 20 kE


# Conclusions

- P2 is a cutting-edge project with longstanding expected results and many implications :
  - Precision electroweak tests (Weak mixing angle landscape);
  - indirect searches for new physics;
  - Impact on coherent neutrino scattering (F<sub>A</sub>) and astrophysics (neutron skin)
- BASKET is a chance for IRFU to have a very strong impact in this leading experiment Interest : detector and readout design for 100 MHz tracking; hardware-based tracking algorithms
- Detector design pre-final; clear readout strategy; validation of several important aspects is ongoing (readout test bench; cosmics; sources; test beam)
- Time is pressing given advancement this project can be built in 2.5-3 years, but concrete decisions need to made now.

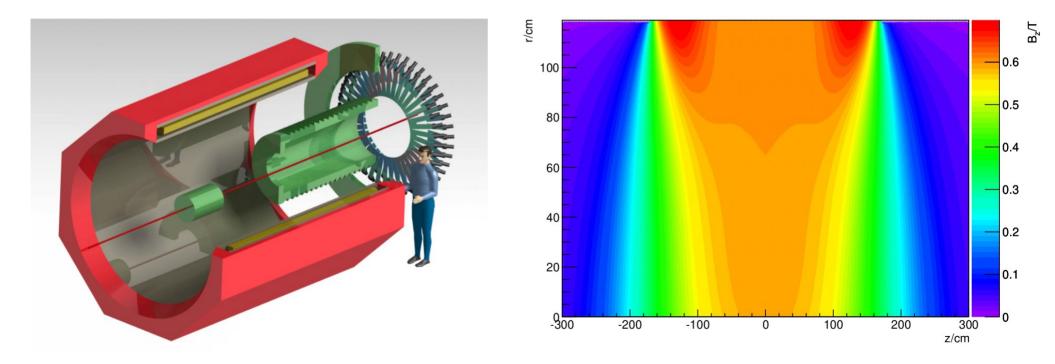
# Back-up

maarten.boonekamp@cea.fr


## Timelines

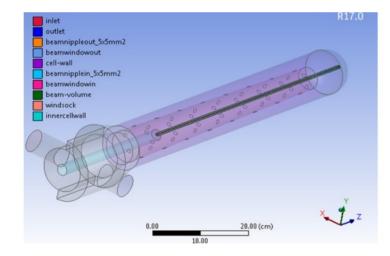


maarten.boonekamp@cea.fr


# Backward tracker project

- Further study based on resistive Micromegas detectors.
- Module design
  - Inspired by CLAS12 :




P2

• Superconducting solenoid : in construction, delivered 2023



# P2

- Target : designed; construction about to start
  - Extensive experience in Mainz with targets for past experiments (G0, A4)
  - collaboration with Qweak



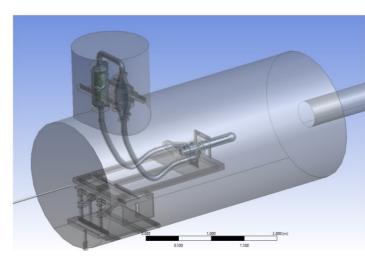
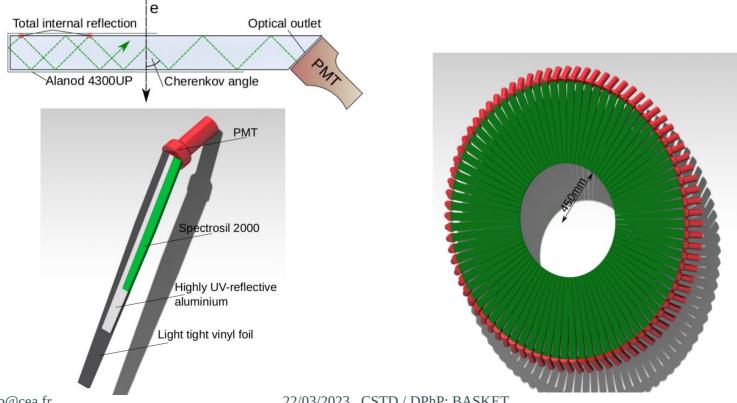



Table 9. P2 target design parameters

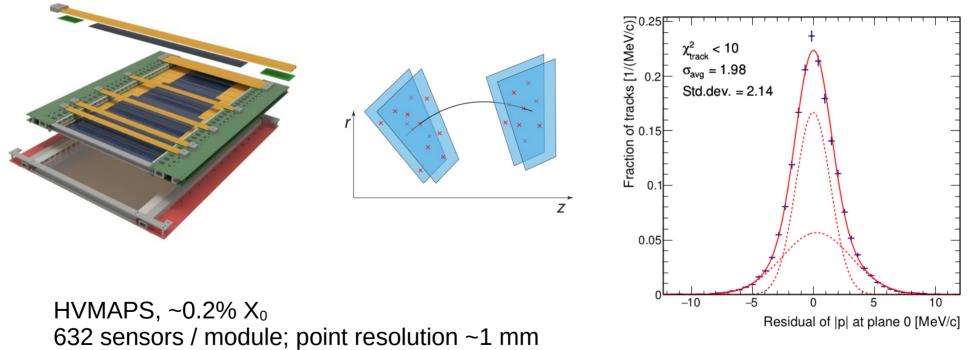
| Pressure/temperature                       | $2.4\mathrm{bar}$ / $20\mathrm{K}$ |
|--------------------------------------------|------------------------------------|
| Cell length                                | $60\mathrm{cm}$                    |
| $\dot{m}$                                  | $< 2  \mathrm{kg/s}$               |
| $\ell H_2$ pump head                       | $< 0.1 \mathrm{bar}$               |
| Beam area on target                        | $25\mathrm{mm^2}$                  |
| HX cooling power                           | $4\mathrm{kW}$                     |
| Target thickness                           | $4.3\mathrm{g/cm^2}$               |
| $\ell H_2 (\Delta \rho / \rho)$            | < 2 %                              |
| $\ell H_2 \ (\delta \rho / \rho)$ at 1 kHz | $< 10  \mathrm{ppm}$               |

Table 10. P2 target heat load


| Source                     | Value (W) |
|----------------------------|-----------|
| Beam power in $\ell H_2$   | 3100      |
| Beam power in cell windows | 35        |
| Viscous heating            | 275       |
| Radiative losses           | 200       |
| Pump motor                 | 150       |
| Reserve heater power       | 240       |
| Total heat load            | 4000      |

#### maarten.boonekamp@cea.fr

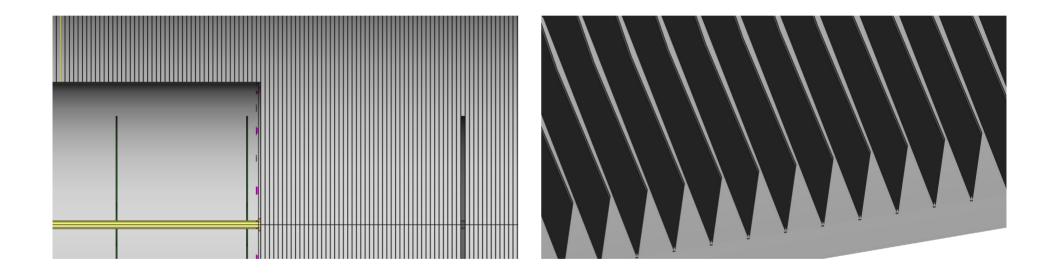
#### 22/03/2023 CSTD / DPhP: BASKET


# P2

- Main integrating detectors : Cerenkov counters + PMT (delivered) •
  - Performance fully under control from extensive test-beam studies \_



maarten.boonekamp@cea.fr


• Forward tracker, for the determination of  $\langle Q^2 \rangle$ 



Partial azimuthal coverage

maarten.boonekamp@cea.fr

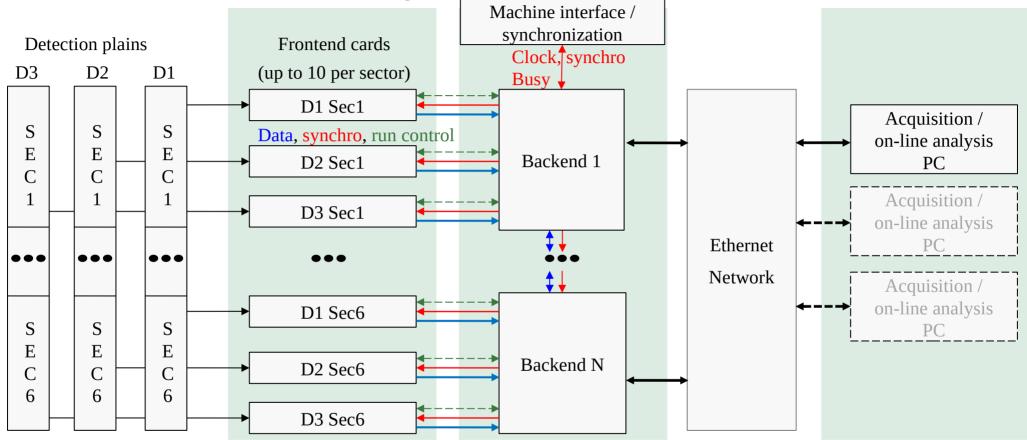
# Shielding



### Rates

# P2, Qweak vs Moller

P2, Qweak measure  $Q_w^p$ ; • Moller measures Qwe MOELLER P2/Qweak


|       | Exp <sup>t</sup>                 | E <sub>beam</sub> | θ         | Q <sup>2</sup> | Status    |  |  |
|-------|----------------------------------|-------------------|-----------|----------------|-----------|--|--|
|       | Qweak                            | 1.16 GeV          | ~9 deg.   | ~0.025         | published |  |  |
|       | P2                               | 155 MeV           | ~35 deg.  | ~0.007         | ~2026+    |  |  |
|       | Moeller                          | 11 GeV            | 5-17 mrad | ~0.007         | ~2026+    |  |  |
| ea.fr | r 22/03/2023 CSTD / DPhP: BASKET |                   |           |                |           |  |  |

maarten.boonekamp@cea.fr

# P2 vs Qweak

|                                     | Qweak                                                 | P2                                                    |
|-------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Energy                              | 1.16 GeV                                              | 155 MeV                                               |
| Scattering angle                    | ~10 degrees                                           | ~35 degrees                                           |
| Q <sup>2</sup>                      | 0.025 GeV <sup>2</sup>                                | 0.007 GeV <sup>2</sup>                                |
| Α <sub>ΡV</sub> (δΑ <sub>ΡV</sub> ) | 226.5 10 <sup>-9</sup> (4.1%)                         | 40 10 <sup>-9</sup> (1.4%)                            |
| Target length                       | 34 cm                                                 | 60 cm                                                 |
| Target heat load                    | 3 kW                                                  | 4 kW                                                  |
| Luminosity                          | 1.7 10 <sup>39</sup> cm <sup>-2</sup> s <sup>-1</sup> | 2.4 10 <sup>39</sup> cm <sup>-2</sup> s <sup>-1</sup> |

### A 3-stage readout architecture



#### Potential to perform on-line tracking in hardware

 $\rightarrow$  A backend treats projective parts of all detectors and transfers only track candidates

 $\rightarrow$  If needed, scale PCs to sustain on-line analysis

Manademceacfnekamp@cea.fr

22/03/2023 CSTD / DPhP: P2 Basket

## Approach

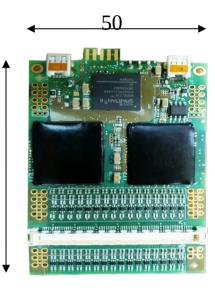
- Two frontend ASICs in the community adapted for the high rate operation
  - $\rightarrow~$  32-channel SAMPA developed in particulate for ALICE TPC
    - Basket needs: ~800 ASICs
  - $\rightarrow$  64-channel VMM3a developed in particular for Atlas NSW
    - Basket needs: ~400 ASICs



- Starting a brand new development for the large scale acquisition too risky
  - $\rightarrow$  Stringent planning with first data taking already in 2025
  - $\rightarrow$  Tense situation with availability of electronics components
- Reproducing existing readout systems heavy or not possible any more
  - $\rightarrow$  LHC acquisitions too specific for particular use
    - Detector specific, clock / control distribution LHC bunch structure oriented
  - $\rightarrow$  sPhenix (BNL) TPC acquisition based on Sampa attractive but excluded
    - Some components already obsolete, dynamic range of the Sampa version too small 100 fC only
  - → CERN RD51 SRS (scalable readout system) not an optimal solution
    - Results to a costly combination of bulky frontend and bulky backend: ~18€ / channel
    - Some parts under upgrade
- Build a readout based on the existing frontends and on the COTS components
  - $\rightarrow~$  Use the 128-channel VMM-based SRS hybrids
  - → Adapt commercial FPGA kit as backend

### Frontend: 128-channel VMM-based SRS hybrid

### Very front end

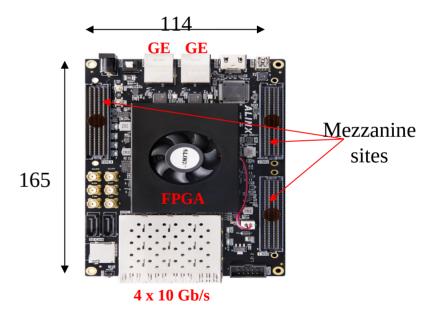

- $\rightarrow$  Maximum charge: up to 2pC in linear range, fast recovery from 50 pC
  - 8 adjustable dynamic ranges including 333 fC and 1 pC
- $\rightarrow~4$  adjustable peaking times: 25, 50, 100 and 200 ns
- $\rightarrow$  Input capacitance: from sub-pF to several nF
- $\rightarrow$  Can operate in continuous readout mode
  - A channel above threshold produces a 38-bit word

### 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 hit data F N Chan#(6) ADC (10) TDC (8) BCID (12)

- → ~400 Mbit/s link per VMM ASIC
- $\rightarrow$  Amplitude resolution 1.3 fC (8.1 ke-) @ 333°fC range
  - About twice than noise expected from the detector capacitance
- $\rightarrow$  Timing resolution ~2.5 ns

### Production of 200 hybrids requires 1.5 years

- $\rightarrow$  Includes spares and test bench boards
- $\rightarrow$  Irfu provides 500 ASICs including expected yield
- $\rightarrow\,$  Production and testing performed by SRS Technology




80



## Backend

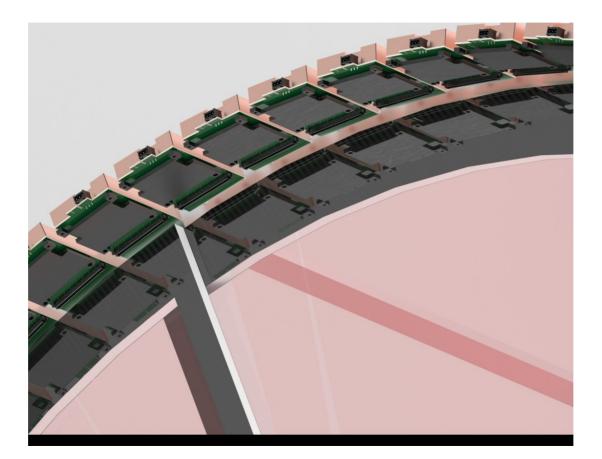
- Backend candidate: AXKU040 from Alinx Electronic Technology
  - → Xilinx Kintex UltraScale FPGA XCKU040-2FFVA1156I
    - ~0.5M flip-flops; 21 Mbit memory; 2000 DSPs; ~500 IO; 20 16 Gb/s transceivers
  - $\rightarrow$  4 Gbyte DDR4 memory
  - $\rightarrow$  4 10 Gbit/s (optical) interfaces
  - $\rightarrow$  2 1 Gbit/s Ethernet interfaces
  - $\rightarrow$  3 mezzanine connectors
    - Possibility to aggregate up to 16 frontends
    - Passive interface boards to be developed
- Offer received for 15 units
  - $\rightarrow$  Includes spares and test bench boards
  - $\rightarrow$  Available right away



### System: the data

- A frontend hybrid
  - → Raw data: ~120 Mbit/s
    - 20% of output link bandwidth
- **Backend concentrator** 
  - $\rightarrow$  Raw data: ~1.5 Gbit/s
    - Requires one 10 Gbit/s Ethernet link: 20% load
    - Requires a high-end 16- or 24-port 10 GB Ethernet switch
    - Performant farm of 4-8 PCs.
  - High level synthesis On-line hardware tracking: 0.7 Mbit/s
    - Requires two 1 Gbit/s Ethernet links: ~50% load per link
    - Requires a 32-port middle-end mixed 1 GB / 10 GB Ethernet switch
    - A farm of 4-8 PCs with 10 GB Ethernet interfaces
    - On-line histogram calculation in hardware: expected to be low
      - Single 1 Gbit/s Ethernet link
      - Requires 16-port Ethernet switch

### System


 $\rightarrow$  Raw data: 2.4 Gbyte/s; 8.5 Pbyte of cumulated data over 1 000 h of data taking







# Readout



maarten.boonekamp@cea.fr

#### 22/03/2023 CSTD / DPhP: BASKET

## Resources

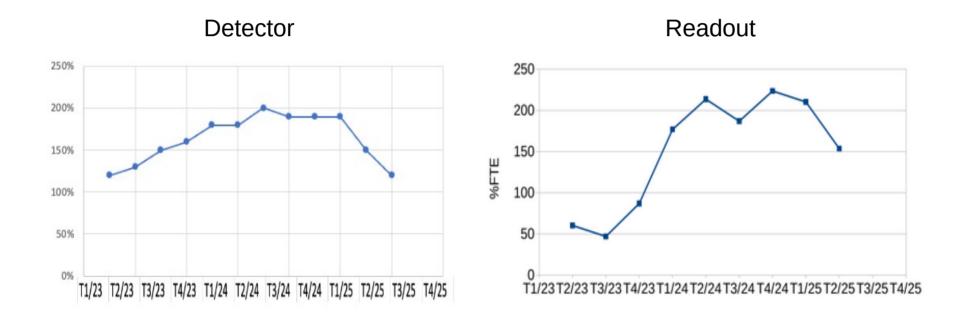
#### • Personpower – detector

|      |                      | 2023 |     | 2023 |     | 2024 2 |     | 202  | 2024 |      | 5   | 2025 |     |
|------|----------------------|------|-----|------|-----|--------|-----|------|------|------|-----|------|-----|
|      |                      | s1   |     | s2   | s1  |        | s2  |      | s1   |      | s2  |      |     |
| D    | A1 Chef de projet    | 10%  | 20% | 20%  | 30% | 40%    | 50% | 50%  | 50%  | 50%  | 50% | 20%  | 10% |
| E    | A1 Labo Bulk         |      |     |      |     |        |     |      |      |      |     |      |     |
| 2    | A2 CAO               | 10%  | 10% | 30%  | 30% | 30%    | 20% | 20%  | 10%  | 10%  | 10% |      |     |
|      | A2 Labo Bulk         |      |     |      |     | 10%    | 10% | 30%  | 30%  | 30%  | 30% | 30%  | 10% |
| 0    | A2 Serigraphie       |      |     |      |     | 10%    | 10% | 10%  | 10%  |      |     |      |     |
| DPhP | A1 Hardware          | 20%  | 20% | 20%  | 50% | 50%    | 50% | 100% | 100% | 100% | 50% | 50%  | 50% |
| DIS  | A1 CAO               |      |     | 30%  | 30% | 30%    | 30% | 30%  | 30%  | 20%  | 10% |      |     |
|      |                      | 2023 |     | 2023 |     | 2024   |     | 2024 |      | 2025 |     | 2025 |     |
|      |                      | s1   |     | s2   |     | s1     |     | s2   |      | s1   |     | s2   |     |
|      | Detector Design      |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Procurement          |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Prototyping          |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Prototyping Tests    |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Final Design         |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Final Procurement    |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Layer 1 Construction |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Layer 1 Validation   |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Layer 2 Construction |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Layer 2 Validation   |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Layer 3 Construction |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Layer 3 Validation   |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Mecanical Design     |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Procurement          |      |     |      |     |        |     |      |      |      |     |      |     |
|      | Assembly             |      |     |      |     |        |     |      |      |      |     |      |     |

maarten.boonekamp@cea.fr

#### 22/03/2023 CSTD / DPhP: BASKET

# Resources


• Personpower – readout

Competences :

| Expertise   | FTE (total) |
|-------------|-------------|
| Management  | 0.5         |
| Electronics | 1.5         |
| Software    | 1.0         |
| Physicists  | 0.5         |
| Mechanics   | 0.5         |
| Technician  | 0.5         |
| CAD         | 0.1         |
| Engineering | 4.0         |
| Technical   | 0.6         |

## Resources

• Person power – time profile

