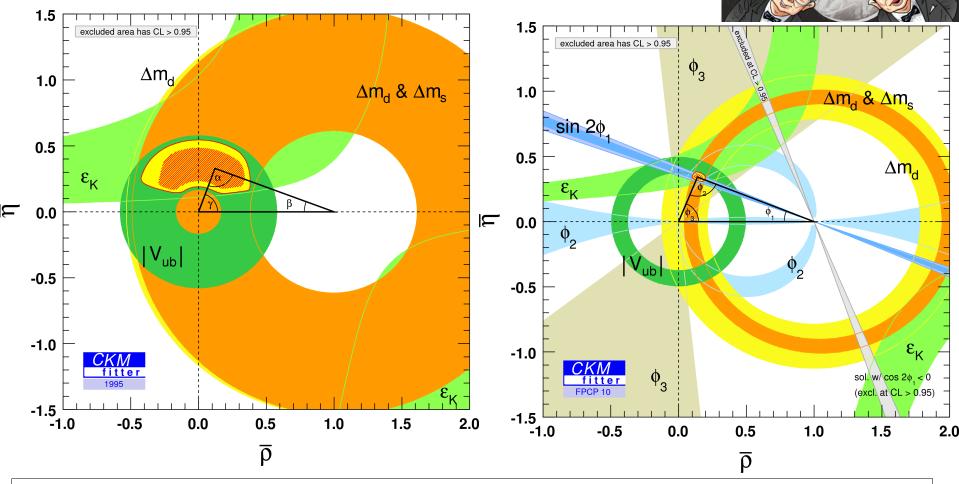


シーケーエムフィッター

S. T'JAMPENS LAPP(CNRS/IN2P3 et Université de Savoie)

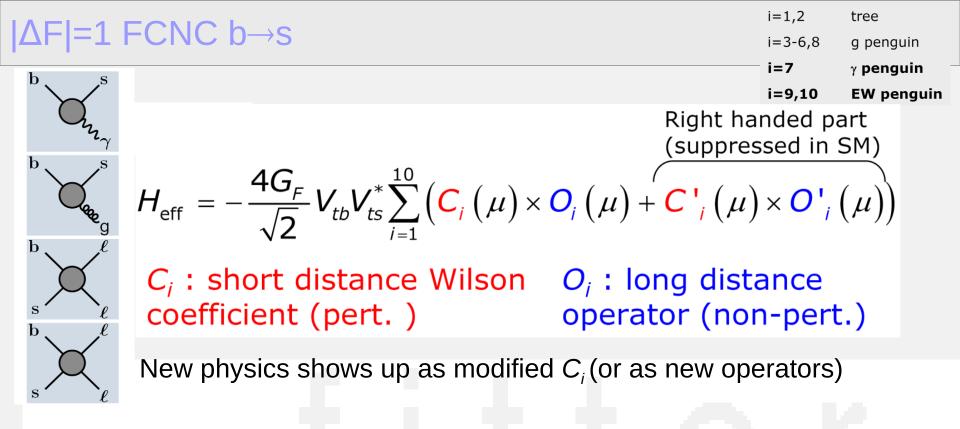

S. Descotes-Genon LPT(CNRS et Université Paris-Sud XI) PARTICLE PHYSICS JOINT LAB JAPAN - FRANCE

TYL'10 – LAPP – June 15-16 2010

KM Mechanism: 1973 to the 2008 Nobel Prize

The great success of the B factories, Tevatron and LQCD (and the Standard Model): the KM mechanism is the dominant source of CPV at the EW scale.

→Looking for corrections to the SM picture of flavor: NP
 →Precision measurements: from O(10%) to O(1%) [LHCb and Belle II]


The Quest for New Physics in Flavor Physics

G. Isidori – Beauty 03

	decreasing SM contrib.						
		$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d ~(\sim \lambda^3)$	$s \rightarrow d (\sim$	λ^5)		
decrea- sing SM contrib.	$\Delta F=2$ box	$\Delta M_{Bs} A_{CP}(B_s \rightarrow \psi \phi)$	$\Delta M_{Bd} \\ A_{CP}(B_d \rightarrow \psi K)$	ΔM_{K} , ϵ_{K}			
	$\Delta F=1$ 4-quark box	$B_d \rightarrow \phi K, B_d \rightarrow K\pi, \dots$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi, \dots$	ε'/ε, K→3π,			
	gluon penguin	$\begin{array}{l} B_{d} \rightarrow X_{s} \gamma, \ B_{d} \rightarrow \phi K, \\ B_{d} \rightarrow K \pi, \ \dots \end{array}$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi, \dots$	$\varepsilon'/\varepsilon, K_L \rightarrow \pi^0 I$	<i>⁺Γ</i> ,		
	γ penguin	$\begin{array}{l} B_{d} \rightarrow X_{s} \ f \ I, \ B_{d} \rightarrow X_{s} \ \gamma \\ B_{d} \rightarrow \phi K, \ B_{d} \rightarrow K\pi, \ \dots \end{array}$	$\begin{array}{c} B_{d} \rightarrow X_{d} \ I^{I} I, \ B_{d} \rightarrow X_{d} \ \gamma \\ B_{d} \rightarrow \pi \pi, \ \dots \end{array}$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^{\dagger} l,$			
	Z ⁰ penguin	$\begin{array}{l} B_{d} \rightarrow X_{s} \ f \ I, \ B_{s} \rightarrow \mu \mu \\ B_{d} \rightarrow \phi K, \ B_{d} \rightarrow K \pi, \ \dots \end{array}$		ε'/ε, $K_L \rightarrow \pi^0 I$ $K \rightarrow \pi \nu \nu$, $K \rightarrow$			
	H ⁰ penguin	$B_s \rightarrow \mu \mu$	$B_d \rightarrow \mu \mu$	K _{L,S} →µµ			
Theoretical errors $< 10\%$ learn						much more to an just the UT ncy check	

CKMfitter@FJPPL

- In the framework of CKM fit, the NP effect is searched for in the $B_{d,s}$ - $B_{d,s}$ mixing diagram, i.e., comparison of ρ - η constraints by $(\beta/\phi_1, \alpha/\phi_2, \Delta m_{d,s})$ and by $(\gamma/\phi_3, V_{ub})$

- A complementary NP search can be performed by studying the FCNC transitions like $B \rightarrow X_s \gamma$ and $B \rightarrow X_s l^+l^-$ which are governed by Wilson Coefficients C_7 , C_9 and C_{10} .

- The determination of Wilson Coefficients using various FCNC decays simultaneously in the similar manner as that in CKM fit (global fit) can be a sensitive probe to NP by comparing with the SM expectations.

Operators and Observables

		magnitude	phase	helicity flip \mathcal{O}'_i
$\mathcal{O}_{7\boldsymbol{\gamma}}$	$^{\mathrm{b}}$	$b \rightarrow s \gamma$	$a_{CP}(b \to s\gamma)$	$\Lambda_b \to \Lambda \gamma$ $B \to (K^* \to K\pi)\ell^+\ell^-$ $B \to (K^{**} \to K\pi\pi)\gamma$
$\mathcal{O}_{8\mathrm{g}}$	b Corego g	$\begin{array}{c} b \to s\gamma \\ B \to X_c \end{array}$	$\begin{array}{c} a_{CP}(b \to s\gamma) \\ B \to K\phi \end{array}$	$\begin{array}{c} \Lambda_b \to \Lambda \phi \\ B \to K^* \phi \end{array}$
$\mathcal{O}_{9\ell,10\ell}$	$\mathbf{x}_{\mathbf{s}}^{\mathbf{b}}$	$b \rightarrow se^+e^-$	$A_{FB}(b \to s\ell^+\ell^-)$	$B \to (K^* \to K\pi)\ell^+\ell^-$
$\mathcal{O}_{S,P}$		$B_{d,s} \to \mu^+ \mu^-$	$B_{d,s} \to \tau^+ \tau^-$	$b \rightarrow s \tau^+ \tau^-$

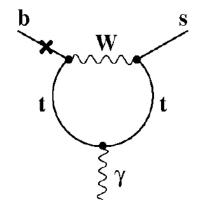
Radiative decays

$$b \rightarrow D\gamma^{(*)}$$
 with $D = d, s$

- access to $|V_{t(d,s)}|$ within SM
- cross-check of neutral B mixing (box/penguin)
- Ioop processes very sensitive to NP

In terms of effective Hamiltonian (integrating d.o.f above b quark)

$$\mathcal{H}^{b \to s} = -\frac{4G_F}{\sqrt{2}} (\sum_i V_{ts}^* V_{tb} C_i Q_i + V_{ub}^* V_{us} (C_1 Q_1^{c-u} + C_2 Q_2^{c-u}))$$


with main contributions to radiative decays from

•
$$Q_7 = \frac{e}{g^2} m_b \, \bar{D} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \, b$$

•
$$Q_9 = rac{e^2}{g^2} ar{D} \gamma_\mu (1-\gamma_5) b \ ar{\ell} \gamma_\mu \ell$$

•
$$Q_{10} = rac{e^2}{g^2} \bar{D} \gamma_\mu (1 - \gamma_5) b \, \bar{\ell} \gamma_\mu \gamma_5 \ell$$

• New physics changes Wilson coeffs C_i and/or new operators Q'_i

$$b
ightarrow s\gamma$$

For real photons, only Q_7 contributes (+ four-quark operators)

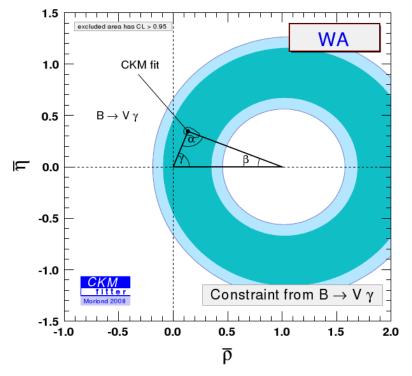
$$m{Q}_7 = rac{m{e}}{m{g}^2} m_b \, ar{m{D}} \sigma^{\mu
u} (\mathbf{1}+\gamma_5) m{F}_{\mu
u} \, m{b}$$

Exclusive: $B \rightarrow K^* \gamma$ and $B \rightarrow (\rho, \omega) \gamma$

- Measurements available from Babar & Belle
- Hadronic effects difficult to estimate theoretically (form factors)
- Naively : $A(B \rightarrow V\gamma) \propto V_{tD}V_{tb}^*C_7T_1^{B \rightarrow V}$

Inclusive: $B \rightarrow X_s \gamma$

- accurately measured (but correlated with exclusive meas)
- computed perturbatively up to (N)NLO


[Misiak et al.]

will be considered later...

${\it B} ightarrow ho \gamma$ and ${\it B} ightarrow {\it K}^* \gamma$

 $b \rightarrow d, s\gamma$: loop processes, give access to $|V_{t(d,s)}|$, complement $\Delta m_{d,s}$

Early days : focus on magnetic op. $Q_7 = (e/8\pi^2)m_b \bar{D}\sigma^{\mu\nu}(1 + \gamma_5)F_{\mu\nu}b$ and assume short-distance dominance

$$\begin{split} R_{\rho/\omega} &= \frac{\overline{\mathcal{B}}(\rho^{\pm}\gamma) + \frac{\tau_{B^{\pm}}}{\tau_{B^{0}}} \left[\overline{\mathcal{B}}(\rho^{0}\gamma) + \overline{\mathcal{B}}(\omega\gamma)\right]}{\overline{\mathcal{B}}(K^{*\pm}\gamma) + \frac{\tau_{B^{\pm}}}{\tau_{B^{0}}} \left[\overline{\mathcal{B}}(K^{*0}\gamma)\right]} \\ &= \left|\frac{V_{td}}{V_{ts}}\right|^{2} \left(\frac{1 - m_{\rho}^{2}/m_{B}^{2}}{1 - m_{K^{*}}^{2}/m_{B}^{2}}\right)^{3} \frac{1}{\xi^{2}} \left[1 + \Delta R\right] \end{split}$$

• ξ ratio of form factors

• ΔR estimated as $\Delta R = 0.1 \pm 0.1$

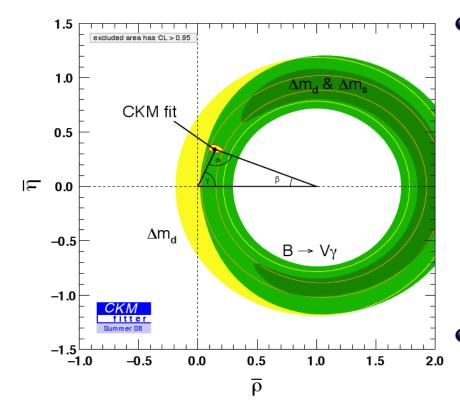
Ali,Lunghi,Parkhomenko 02,04,06

Many open questions : dependence of ΔR on CKM matrix ? isopin breaking ? weak annihilation (tree for $(\rho, \omega)\gamma$) ?

A more sophisticated analysis

For each final state, estimate all contributions, expressed as factor to the leading amplitude (magnetic operator Q_7)

$$\bar{\mathcal{A}} \equiv \frac{G_{F}}{\sqrt{2}} \left(\lambda_{u}^{D} a_{7}^{u}(V) + \lambda_{c}^{D} a_{7}^{c}(V) \right) \langle V \gamma | Q_{7} | \bar{B} \rangle \qquad \lambda_{U}^{D} = V_{UD}^{*} V_{Ub}$$


$$a_7^U(V) = a_7^{U,QCDF}(V) + a_7^{U,ann}(V) + a_7^{U,soft}(V) + \dots$$

• QCDF : QCD factorisation for LO in $1/m_b$ up to $O(\alpha_s)$

Bosch and Buchalla 02

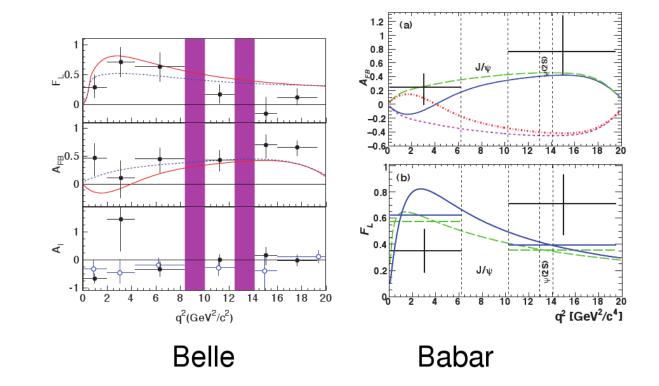
- ann,soft : 1/m_b-suppressed terms from light-cone sum rules Ball,Jones,Zwicky 06
- each decay described individually
- *u* and *c* internal loops (short and long dist), not "buried" into ΔR
- other operators than Q_7 taken into account

Package $B \rightarrow V\gamma$ (available)

- *C_i(m_b)*, form factor *T*₁
 |*V_{ud}*|, |*V_{us}*|, |*V_{cb}*|
 HFAG averages
 K^{*-}γ 45.7 ± 1.9
 - $\kappa^{*0}\gamma$ 44.0 ± 1.5

 $\rho^+\gamma$ 0.98 ± 0.25

 $\rho^0\gamma$ 0.86 ± 0.15


 $\omega\gamma$ 0.44 \pm 0.17

Belle 0804.4770, 0712.2659

 $B(B_s \to \phi \gamma) = 57 \pm 22$ $C(B^- \to \rho^- \gamma) = 0.11 \pm 0.32 \pm 0.09$

$$b
ightarrow s \gamma^{(*)}$$

Focus on $B \to K^* (\to K\pi) \ell^+ \ell^-$, prominent at LHCb and Belle II

Differential branching ratio, forward-backward asymmetry, polarisation (waiting for full angular analysis !)

Angular analysis

If no S-wave and all P-wave from narrow K^* , angular analysis:

 $\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*} d\phi} \\ \propto l_1^s \sin^2\theta_{K^*} + l_1^c \cos^2\theta_{K^*} + (l_2^s \sin^2\theta_{K^*} + l_2^c \cos^2\theta_{K^*}) \cos 2\theta_l \\ + l_3 \sin^2\theta_{K^*} \sin^2\theta_l \cos 2\phi + l_4 \sin 2\theta_{K^*} \sin 2\theta_l \cos \phi \\ + l_5 \sin 2\theta_{K^*} \sin\theta_l \cos \phi \\ + (l_6^s \sin^2\theta_{K^*} + l_6^c \cos^2\theta_{K^*}) \cos\theta_l + l_7 \sin 2\theta_{K^*} \sin\theta_l \sin\phi \\ + l_8 \sin 2\theta_{K^*} \sin 2\theta_l \sin\phi + l_9 \sin^2\theta_{K^*} \sin^2\theta_l \sin 2\phi .$

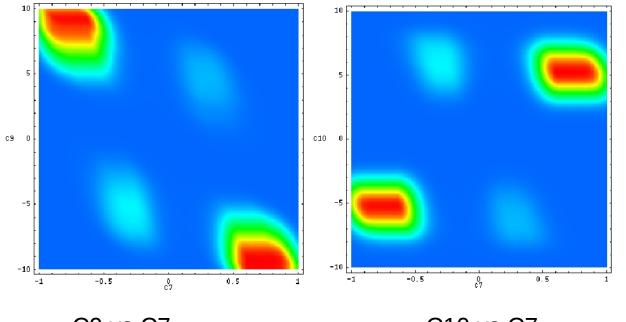
All observables can be expressed in terms of angular coeff /

$$\frac{d\Gamma}{dq^2} = \frac{3}{4} (2 I_1^s + I_1^c) - \frac{1}{4} (2 I_2^s + I_2^c). \qquad F_L \propto -I_2^c$$

$$A_{FB} = \left[\int_0^1 - \int_{-1}^0 \right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} / \frac{d\Gamma}{dq^2} \propto \frac{3}{8} (2 I_6^s + I_6^c).$$

 I_i interferences between eight transversity amplitudes

 $A_{\perp,L/R}, A_{\parallel,L/R}, A_{0,L/R}, A_s, A_t$, depending on


- q² (lepton pair invariant mass)
- Wilson coefficients C_7 , C_9 , C_{10} (known perturbatively in SM)
- $B \rightarrow K^*$ form factors $A_{0,1,2}$, V, $T_{1,2,3}$

Global fit of Wilson coefficients

- Take a model for form factors [Ali et al. 00, Ball & Zwicky 05]
- Fit C_7 , C_9 , C_{10} from differential Γ , A_{FB} , f_L
- Compare with SM expectations

[Hurth et al. 2008, Altmannshofer et al. 2009]

Package $B \rightarrow V \ell \ell$ (under development)

With Belle only Fair agreement with SM $C_7(m_b) \simeq -0.342$ $C_9(m_b) \simeq 4.344$ $C_{10}(m_b) \simeq -4.699$

C9 vs C7

C10 vs C7

Ghost solutions with flipped sign C₇ (f_L favours SM C₇ and A_{FB} slightly favours flipped sign C₇)

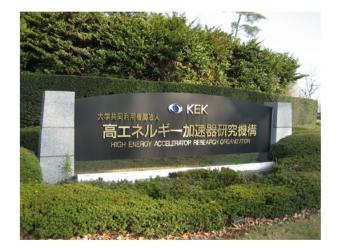
Programme

 $B
ightarrow V \ell^+ \ell^-$

- Analyse in detail the current data (sensitivity to hadronic inputs...)
- Finalise $B \to K^* \ell^+ \ell^-$ package, with NNLL Wilson coeffs
- Study of low q²-region where all form factors in terms of 2 soft form factors and corrections computed using QCD factorisation
- Impact of $c\bar{c}$ resonances (in collab with experimental analysis)
- Interface with $B \rightarrow V\gamma$: common packages for SM Wilson coefficients, form factors

Other radiative decays

- Inclusive decays $B \to X_s \gamma$, $B \to X_s \ell \ell$
- Exclusive decays $B \to K\ell\ell, B_s \to \phi\ell\ell$
- Interface together (with correlations) for a combined extraction of the Wilson Coefficients


Collaboration and discussions

Visit to KEK in April 09

- J. Charles, St. T'Jampens, S. Descotes-Genon
- Two seminars on CKMfitter for exp. group and discussions
- Visit to KEK in February 10
 - S. Descotes-Genon
 - Lectures at Belle Analysis School, seminars for lattice group, and discussions

Visits in France/Germany in 2009-10

- K. Trabelsi and R. Itoh
- Collaboration meetings with CKMfitter members

Merci Thank you ありがとうございます。