Missing E_T +b-jets: from single top observation to limits on Higgs at

Fabrizio Margaroli Purdue University On behalf of CDF

1

Photograph of the Columbian Fountain at the World's Columbian Exposition in Chicago

Fabrizio Margaroli

The missing E_T+b-jets signature

Searches in MET+b-jets signature are very interesting:

- In SM, with this signature you can catch one of the most striking production modes for the Higgs boson
- Associated production of Higgs boson together with a vector boson
- Search for SM Higgs boson in the process $ZH \rightarrow vv bb$

• <u>Several SUSY processes (squarks/gluinos) would show up in the MET+(b)jets</u> <u>signature</u>

Fabrizio Margaroli

The missing E_T+b-jets signature

That would be the end of the story for an *ideal detector*. We are going to cover here much more though. Infact, due to limitations in the lepton coverage, this signature is actually **way more interesting** than that

• Whenever you miss the lepton, you accept in the same sample another key production mode for the Higgs boson, WH \rightarrow $l\nu$ bb

• Search for $ZH \rightarrow vv$ bb and $WH \rightarrow Iv$ bb in the MET+b-jets signature

Extra goodies!

- Are there more places where MET+b-jets signature is very interesting?
- acceptance to physics giving leptons, neutrinos and b-jets.
 In particular, there is such a process which gave really hard times at CDF:

Single top production!

I am going to present today:

- first single top search in the MET+b-jets signature
- Tevatron most stringent limits to Higgs production in MET+b-jets signature

Fabrizio Margaroli

The Tevatron collider

- Fermilab's Tevatron Run II pp̄ collider at 1.96 TeV, running since 2001. Currently performing very well:
 - 3.7.10³² cm⁻² s⁻¹ new record in instantaneous luminosity!
 - Almost 2fb⁻¹ collected per year
 - Two multi-purpose, well-understood detectors CDF and D0

The rarest SM processes

The I+E_T+b-jets search challenges

The tools of the trade

The CDF II detector

 Muon chamber outside calorimeter coverage |η|<1.5

Fabrizio Margaroli

The jets signature

Generic jets

- Quark/gluons hadronize and produce particle jets
- CDF uses cone based jet reconstruction HAD algorithm. Loops over <u>calorimetric</u> <u>towers</u>
- Jets are easy to find
 - Jets are macroscopic objects: reconstruction efficiency is nearly 100%
 - CDF calorimeter covers almost all solid angle (|η|<2.8 here)
- But carry a lot of complications
 - Jet energy resolution driven by had cal resolution 80%/√E_T source of missing E_T
 - Non-instrumented regions in calorimetry lead to underestimation of jet $E_T \rightarrow source of missing E_T$

Jets at CDF

- Tracks resolution is far better than calorimeter resolution for particles with P_T<50 GeV
- New jet reconstruction algorithm substitute track P_T with cal E_T whenever possible to improve jet energy resolution (10% improvement)

Jet energy scale uncertainty

- Systematic difference from data and Monte Carlo, convolution of many effects
 - 5% to 3% of the jet energy

b-jets

Displaced tracks

Decay lifetime

(0b

Primary vertex

Prompt tracks

- SecVTX: b-quark id'ed w long lifetime of the B mesons they form: identification through search of a secondary vertex within a jet:
 - b-tag eff: ~ 40%
 - fake rate ~ 0.5%

- JetProb: Jet probability algorithm: determines prob that the tracks within a jet are consistent with coming from the primary vertex
 - b-tag eff ~50%
 - fake rate~5%

0.6

0.5

0.4

0.3

0.2

0.1

b-tag efficiency

Jet

Secondary vertex

SecVtx Tag Efficiency for Top b-Jets

Top MC scaled to match data

Only b-jets with E_T>15 GeV

Tight SecVtx

Loose SecVtx

1.8 2 jetη

The missing E_T signature

Missing E_T, and more

Neutrinos:

- measured using the missing transverse energy (MET) from calorimeter.
- Now using also the momentum flow imbalance in the transverse plane as measured from the spectrometer: the missing transverse momentum (MPT) *Neurl*
 - MPT largely correlated to true neutrino energy/direction
 - For QCD events, MPT very different!

Missing E_T , and more

Neutrinos:

- measured using the missing transverse energy (MET) from calorimeter.
- Now using also the momentum flow imbalance in the transverse plane as • measured from the spectrometer: the missing transverse momentum (MPT) neur
 - MPT largely correlated to true neutrino energy/direction
 - For QCD events, MPT very different!

Example: events selected with large MET, 2 high P_T b-jets

Charged leptons

Electrons:

Taus:

No <u>explicit</u> τ ID here.
 Accept τ → leptons through μ,e
 and τ → hadrons through jets

Strict requirement to ID a lepton. Moral: often you don't identify them! Missing leptons can appear as Jets(e, τ) or MET(e, μ , τ)!

Multivariate techniques

Small S and large B with large uncertainties σ_{B} : need to maximize statistical power CDF uses different classes of multivariate techniques:

- Physics oriented exploit knowledge of the matrix element (ME) of the process
- Likelihood ratio(LR) Probability density estimators for each variable combined in 1
- Machine-learning techniques such as and neural networks (NN)
 - Better than LR because exploit correlations among different observables.
 - ME not used here because too little information on signal final state and hard to trust QCD Monte Carlo

The MET+jets trigger

- Trigger on events with large MET, and 2 jets
- Jet E_T and MET resolution low at trigger level \rightarrow huge rates at level 1 and 2

- After trigger cuts at level 3, the trigger cross section is O(10nb)
 - 4 or 5 orders of magnitude larger than our signal!
- Require MET>50GeV to ensure trigger efficiency on MC
- Large separation between jets, to avoid jet merging
 - Both requirements can be loosened after trigger upgrade

QCD background modeling

MC modeling suffers from

- poorly known cross-sections
- need generation of huge samples (>billion events)

MET Sample is QCD dominated \rightarrow use data itself as a Signal Box CR1 NO leptons NO leptons model, but have to account for b-tagging bias 70 GeV TRM CR2 at least one lepton NO leptons Derive per-jet tag probability 50 GeV 0.4 $\Delta\phi(MET, jet2)$

Data-driven modeling contains W+light flavor jet production We use Monte Carlo for all other processes

Fabrizio Margaroli

QCD background modeling

Basic MET+b-jets selection

- Veto presence of identified leptons to be orthogonal to lepton+MET+jets search
- Large MET>50GeV and 2 or 3 jets, where 3rd jet can come from
 - Initial/final state radiation
 - e or τ leptons reconstructed as jets
- Require MET misaligned with jets: rejects 1 order of magnitude of backgrounds, with loss of only about few % of signal

 Require b-tagging to reject QCD production of light flavor jets (improves S/B by 1-2 orders of magnitude)

A typical candidate event

It looks a lot like QCD indeed...clearly a conservative approach won't work. But how can you pretend to find the Higgs here, if you don't measure something first?

The single top search in MET + b-jets

Why measure $\sigma(single top)$?

- Allows measurement of CKM matrix element |V_{tb}|:
 - Is this Matrix 3x3 ?
 Is there a 4th generation ?
 - Does unitarity hold ? $|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \stackrel{?}{=} 1$
 - "simple" 4th generation ruled out by EW fits but see e.g.
 J. Alwall et. al., "Is |V_{tb}|~1?"
 - Eur. Phys. J. C49 791-801 (2007).
 - Probe new physics W'/FCNC

Why measure $\sigma(single top)$?

- Allows measurement of CKM matrix element |V_{tb}|:
 - Is this Matrix 3x3 ?
 Is there a 4th generation ?
 - Does unitarity hold ? $|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \stackrel{?}{=} 1$
 - "simple" 4th generation ruled out by EW fits but see e.g.
 J. Alwall et. al., "Is |V_{tb}|~1?"
 - Eur. Phys. J. C49 791-801 (2007).
 - Probe new physics W'/FCNC

Single top decays

Hard times to get the single top evidence and observation in leptonic mode.

Were we unlucky?

Or something else was hiding?

- **Ele/mu+neutrino+b-jets** The good
 - "decent" branching ratio
 - S/B ratio not awful
 - -4.8 sigma excess with 3.2 fb-1
- All jets

- The bad
- large BR, but:
 huge QCD physics backgrounds.
- No efficient trigger at CDF
- Never attempted
- MET+b-jets signature The ugly – Recover lost leptons, but
 - large QCD instrumental background (see next slide)
 - no chance to identify top
 - Newly attempted!

Know your enemy

QCD-suppressing event selection

Choose a cut to isolate the signal

 Compromise between maximizing background rejection and keeping high signal acceptance (remember, it's a blind analysis)

SM backgrounds producing $\nu^\prime s$

Single top acceptance table

only!

Process	$\ell + \not\!\!E_T + \text{jets}$	$E_T + jets$
<i>s</i> -channel signal	77.3 ± 11.2	$29.6~\pm~3.7$
t-channel signal	$113.8~\pm~16.9$	$34.5~\pm~6.1$
W + HF	$1551.0\ \pm\ 472.3$	$304.4~\pm~115.5$
$tar{t}$	$686.1~\pm~99.4$	$184.5~\pm~30.2$
$Z{+}\mathrm{jets}$	$52.1~\pm~8.0$	$128.6~\pm~53.7$
Diboson	$118.4~\pm~12.2$	$42.1~\pm~6.7$
QCD+mistags	$777.9~\pm~103.7$	$679.4~\pm~27.9$
Total prediction	$3376.5~\pm~504.9$	$1404~\pm~172$
Observed	3315	1411

- +50% acceptance per fb⁻¹ mostly coming from taus
- With same S/B ratio as in I+MET+jet

Table from Phys. Rev. Lett. 103, 092002 (2009)

MET + b-jets systematics

Uncertainty on backgrounds 3 times larger than signal!

Systematic source		Rate	Shape	Comment	
	Top quark pair cross section	$\pm 12\%$	-		
	W/Z + h.f. cross section	$\pm 40\%$] -		
	Diboson cross section	$\pm 11\%$	-		
Luminosity		6%	-	Not for QCD multijet	
	Trigger efficiency	< 2.6%	Х		
	B tagging scale factors	4.3% to $12%$	-		
	Lepton Veto	2%	-		
	ISR/FSR	$-4.5\% \ldots + 16\%$	Х	Only for top quark processes	
	JES	$-14\% \ldots + 23\%$	Х		
	PDF	$\pm 1\% \ldots \pm 2\%$	Х	Shape for signal only	
	QCD multijet model	$4.5\% \dots 13\%$	Х		
	Background scaling	2%	-		
	Signal cross section	$\pm \ 12\%$	-	Only for a value and V. computation	
	Top quark mass dependence	$-16\% \ldots +7.5\%$	Х	Only for p -value and V_{tb} computat	

Let's see whether we have some residual handles

Missing ET plus jets NN (MJ)

- Each variable has little power per se
 - 3σ excess, statistics only
 - down to 2σ once including systematics
- But still orthogonal to other channels, adds sensitivity and serves as consistency check
 - first search in the channel!

Missing ET plus jets NN (MJ)

- Each variable has little power per se
 - 3σ excess, statistics only
 -down to 2σ once including systematics
 -Measure sigma_t=4.9+2.6-2.2
- But still orthogonal to other channels, adds sensitivity and serves as consistency check -first search in the channel!

-arxiv1001.4577, submitted to PRD

CDF results and combination

Fabrizio Margaroli

Top in 1995

Top quark discovered in pair production at CDF

For many years, the only place where to study the top quark

Top in 2010

Why so long?

- half the cross section as ttbar production
- about 100 times worse
 S/B ratio

Now exploring a new window to top quark physics

A 5.5fb⁻¹ result lepton + MET + jets MET + jets lepton + MET + jets 500 Events Events 200 **Event Yield** DØ 2.3 fb⁻¹ Data 10⁴ tb+tab 400 W+iets 150 10³ Multiiets 300 100 10² 200 10 50 0.6 0.7 0.8 100 0<u></u>∟ 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 08 -0.5 Ω 0.5 MJ Discriminant **Combination Output** Super Discriminant **Single Top Quark Cross Section** August 2009

Important to have a result in a different signature (and in both experiments) to increase confidence

Crucial to combine them to increase precision

arXiv:0908.2171

20% better than single experiment determination

Direct [V_{tb}] Measurement

- Using cross section result measure $|V_{tb}|$
- Assume Standard Model (V-A) coupling and |V_{tb}| >> |V_{ts}|, |V_{td}| (from BR(t →Wb) measurements)

Combination increases precision from 13% to 9% on V_{tb} Experimental uncertainty comparable to theoretical uncertainty

Fabrizio Margaroli

Marseille CPPM

arXiv:0908.2171

s- vs t-channel

- The two observation analyses measured combined single top quark cross section, assuming SM ratio between s and t
- This ratio is modifid in several new physics scenarios
 - for example in models with additional quark generations,
 - new heavy bosons
 - flavor-changing neutral currents
 - anomalous top quark couplings

Fabrizio Margaroli

The Higgs search in MET+b-jets

Now the Higgs: where to look?

Top quark mass was found in agreement with prediciton from fits to EWK parameters Now use m_{top} and more to point us to the Higgs!

Tevatron's results:

 $\label{eq:m_top} \begin{array}{l} m_{top} = 173.1 \pm 1.3 \; GeV \; (\mbox{arXiv:hep-ex/0903.2503v1}) \\ m_W = 80.399 \pm 0.025 \; GeV \\ \mbox{which in the EWK fit give the following predictions} \end{array}$

- $m_{\rm H} = 90^{+36}_{-27} \, \text{GeV}$ @ 68 % CL
- m_H < 163 GeV @ 95 % CL

LEP directly searched the existence of the Higgs boson and found: m_H > 114.4 GeV @ 95% CL

Low mass is SM favored region... ...and where the MET+b-jets signature matters!

Higgs strategy at the Tevatron

Low mass m_H < 135GeV: BR(H→bb) dominates: gg → H → bb too challenging! QCD irreducible Look at HV evts, use W/Z signatures to increase S/B

Higgs production cross section at the Tevatron:

- gg→H highest production x-sec
- W/Z+H about a order of magnitude smaller

WH/ZH decays

Dileptonic(e,mu) ZH → II bb

cleanest channel and fully reconstructed final state - BUT lowest oXBR

- Ele/mu+Jets WH → Iv bb good S/B ratio, limited lepton coverage
- All hadronic WH/ZH → qq bb challenging channel: highest BR BUT huge QCD physics backgrounds (hard to reduce)
- Missing Energy plus jets ZH → vv bb here not just a "recovery" signature (see next slide), huge QCD instrumental background

Single channels not sensitive to Higgs: exclusion can be achieved by combination of DEDICATED analysis for EACH channels from BOTH experiments!

$ZH/WH \rightarrow missing E_T + b-jets$

Same preselection same as single top search <u>i</u>n MET+b-jets. Acceptance to HV production through H → bb decay and many different vector boson decay modes

Final Higgs event selection

- Use 3.6fb⁻¹ of recorded data here
- slightly different QCD killer NN
 - maximize acceptance
 - almost 4 evts/fb-1

DIVIDE ET IMPERA

Split in high and low significance S/√B

- 40% improvement by splitting in high and low S/√B regions
- 10% improvement by including the worst S/√B region (1 b-tagged jet)

NN_{OCD}

b-tags	N Higgs evts (@115GeV)	N bck evts	S/√B
All	12.4	2930	0.23
1 SecVTX	6.7	2500	0.13
1 SecVTX +1 JetProb	2.6	260	0.16
2 SecVTX	3.1	170	0.24
Quadra	0.32		
Quala	0.52		

Multivariate discriminant

Similar challenges to single top search: but here we do reconstruct the signal resonance, so a lot more to gain!

A close look at the discriminant

Higgs magnified X 25

NN Discriminant

Analysis	ll+jets	l+MET+jet	MET+jets
S (ev/fb ⁻¹)	.7	3.8	3.5
S/B	1/50 - 1/250	1/70 - 1/400	1/50 - 1/350

S/B ratio 1/6 in most sensitive bin We expect 1.4 Higgs events here (assuming M_H=115)

Fabrizio Margaroli

The MET+jets results

- Do a binned likelihood scan of the 3 NN discriminant distributions
 - In absence of an excess, report the 95% CL limit on the cross section
 - For simplicity, quote number as X times the SM Higgs cross section
 - With an expected limit of 4.2 the SM xsec for 3.6fb⁻¹ analyzed, this search is the most sensitive low mass Higgs search per fb⁻¹ at the Tevatron, comparable to the CDF WH to lvbb search
 - Search twice more sensitive per fb⁻¹ than the previosly published one

How it fits in the CDF combination

As mentioned earlier..

- No single analysis at low mass sensitive to Higgs
- BUT! Combination provides a <u>x2 improvement</u> with respect to to single best analysis

And in the Tevatron combination

 At 115Gev, we are 1.8 times the Standard Model cross section (average lumi used 4.5fb⁻¹)

Tevatron future at low mass

Probability of 3o Evidence

- Experiments are continuously improving analysis technique:
 - Summer 07 projection expect a improvements between 1.5 to 2.25 to existing sensitivity
 - increased indeed by a factor of >1.5 last year: equivalent of using more than double luminosity
 - More/new ideas currently being tested to increase further sensitivity

Conclusions

MET+b-jets is a very hard signature at hadron colliders.

Infact, you need to:

- contantly control and especially evolve! understanding of MET, jets, and the way you trigger data acquisition on them
- model QCD accurately, fight it relentlessly
- Now several others SM and SM-searches benefiting from the above understanding

But there is a lot of satisfaction to all this:

- MET+b-jets contributed to single top observation at CDF
- MET+b-jets golden mode to search for low mass Higgs at the Tevatron

Are multivariate techniques safe?

Look at top pair production x-sec measurements in different samples, with different techniques

Are multivariate techniques safe?

Look at top pair production x-sec measurements in different samples, with different techniques

Fabrizio Margaroli

Fourth generation

• LEP set indirect limit on number of light neutrinos to be 3; $M(v_4)>45GeV$

- LEP set direct limits on 4th gen charged and neutral leptons to be M(l,v,t',b')>100GeV
- Tevatron has sensitivity to higher mass range, up to the 0.5 TeV range
- Search for `fourth generation' or `4th generation' on Spires gives >250 results, mostly phenomenology papers
 - Many possible scenarios still compatible with direct and indirect constraints!
 - Simple model, also relaxes the constraint on Higgs mass to be low mass

Fourth generation of quarks

Assumes M(b')>M(t)+M(W) Look at same-sign dilepton, MET, b-jets Scan for an excess in Njets distribution

95% Limits for b' (CDF Run II Prelim 2.7/fb)

Assume M(t')>M(t) and $M(t') - M(b')^{\overline{q}}$ < M(W) then decay t't' \rightarrow qqWW. Same as ttbar but different reconstucted mass

m(ť) > 335 GeV

Fabrizio Margaroli