Large Charge 't Hooft Limit
of / =4 SYM

Based on arXiv: 2306.00929 with Joao Caetano (CERN)), Yifan Wang (NYU)
& works / discussion in progress + Jingxiang VWu (Oxford) (1/16-BPS)
Nicola Dondi (Bern), Francesco Galvagno (ETH) (“dual” description)



A big goal, dream, or hallucination
A A

A ~ O(1), single-trace
Integrability

>NC

* Integrability has been extremely powerful in determining the planar
CFT data of single-trace ops.




A big goal, dream, or hallucination

A A

A ~ N2, Black Holes

A ~ O(1), single-trace
Integrability

>NC

* Integrability has been extremely powerful in determining the planar
CFT data of single-trace ops.

* An important but difficult question: Understand black-hole states from
field theory (beyond BPS micro-state counting). Integrability seems useless.



A big goal, dream, or hallucination
A A

A > 1, Large Charge,

A ~ N2, Black Holes
Heavy State

A ~ O(1), single-trace
Integrability

>NC

* One possible strategy: First study A > 1 operators at finite N, .

(Large quantum number expansion). And combine it with insights we
learned from integrability.

* For this strategy to work, at least we need to see similar features in
two regimes (planar limit & large charge).



A big goal, dream, or hallucination
A A

A > 1, Large Charge,

A ~ N2, Black Holes
Heavy State

A ~ O(1), single-trace
Integrability

>NC

* Punchline: There is one common feature (for /2 BPS states), which
constrains the dynamics in both regimes.

Centrally-extended p3u(2 | 2)?  [Beisert 06]

(A similar story likely holds also for |/16 BPS operators)
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Systems with large # of d.o.f

* Systems with large # of d.o.f often exhibit emergent phenomena.

* [wo ways to introduce large # of d.o.f.

|. Consider a family of theories (parametrized by “N.”) and take
N.— 0.

2. Consider a state in a given theory in which a large number of
particles are excrted.

* The former is the large N, limit. The latter is common in cond-mat.



Large # of particles

Effective interaction strength

For g and N small:

Aot ~ &N

perturbation around free system



Large # of particles
Aett ~ 8 N

» Even if the fundamental interaction is weak (g < 1), the sector
with a large # of particles can be strongly coupled.

 Suggests a double scaling limit, A : fixed,and N = oo .
* Formally this looks like a 't Hooft limit.....

* |s there any similarity with the standard 't Hooft limit....?



“Duality”

[Polchinski, Silverstein *12]

D// —> AdS; xS x T4

N Fl

1 NS5

* When viewed from fundamental strings, this is a standard large N
imit of 2d theory.

* When viewed from NS5, this is a large charge state in 6d.

* [t suggests that the large charge and the large N, can be sometimes
dual descriptions of the same system.

* There is also a close connection to open-closed-open triality.
[Gopakumar, unpublished], [Gopakumar, Mazenc ’22]

[Goel, Verlinde 217, [WIP]



Set up: /' = 4 SYM at large charge

o 4d N =4 SYM with SU(2) gauge group.

« |/2 BPS operator tr (gbj) with large R-charge J and take

J — oo with fixed 4, = go,,J.

[Bourget,Rodriguez-Gomez, Russo’ | 8]

* Study near BPS spectrum and correlation functions (heavy-heavy-
light-light etc) in this limit.



Outline

2. Large charge limit vs large charge 't Hooft limit



Physics of large charge limit in CFT

—1

@At

« (0,0,) at large charge < large charge state on R, X S¢

O : minimal dim op. for a given charge J

 large charge limit: J = oo, L = oo with j . finite.

* Lowest energy state in flat space with finite charge density.



Physics of large charge limit in CFT

~ 0(1)

« Generic (nonsupersymmetric) CFT ;: Joae ~ €Egtate

J—) o0 d [Alvarez-Gaume, Cuomo, Dondi, Giombi, Hellerman,
A d—1 Kalogerakis, Loukas, Monin, Orlando, Pirtskhalava,
Rattazzi, Reffert, Sannino,Watanabe....]

e CFT with a moduli space of vacua: jiae ~ O(1), €gye = 0.

state

[Arias-Tamargo, Beccaria, Bourget,

e.g. BPS Operator in SUSY CFT: A « J Hellerman, Maeda, Orlando, Rodriguez-

Gomez, Reffert, Russo, Watanabe....]



Large charge limit in SUSY CFT

« Coulomb branch chiral ring in /" = 2 SCFT O, = tr(¢)?)

* large charge insertion — nontrivial profile of scalar field

J@gb exp (—S + J log(¢)8%x — x;) + J log(¢)5%(x — x,))

e In theories with marginal coupling gy : (@) ~ gYM\/._/
The theory is effectively on the Coulomb branch.



Large charge limit in SUSY CFT

Coulomb branch chiral ring in A = 2 SCFT O, = tr(¢p?)

Large charge insertion — nontrivial profile of scalar field

J@gb exp (—S + J log(¢)8%x — x;) + J log(¢)5%(x — x,))

In theories with marginal coupling gy @ (@) ~ gYM\/._/
The theory is effectively on the Coulomb branch.

Mass of BPS W-bosons: my, ~ gYM\/j — 00 (J = o)

Derivative expansion of Coulomb branch EFT = 1/J expansion

1 1 2 #  #p?
f— — p + LY N—+L+ L)
pi+mg  mg  my, J J?




Large charge 't Hooft limit

Large charge limit + EFT : powerful, universal predictions

But it Is Insensitive to physics of massive (BPS) excrtations

Alternative limit: [Bourget,Rodriguez-Gomez, Russo’ | 8]

J = oo with 1, = g,/ fixed.

my, ~ A;is finite. They contribute to obs even at J — oo.

Results in the literature so far: BPS correlation functions.

[Arias-Tamargo, Beccaria, Bourget, Grassi, Komargodski, Hellerman, Maeda,
Orlando, Rodriguez-Gomez, Reffert, Russo, Tizzano,Watanabe....]

Goal: Study non-BPS (near BPS) spectrum.



Outline

3. Spectral problem at large charge



Simple weak coupling analysis

« Focus on operators made out of complex scalars X and Z.

* Thanks to the SU(2) trace relation, all operators are generated by
tr(Z?), tr(ZX), tr(X?)

J/2 .
) (1 + corrections)

« Near BPS operator at large charge: (tr(Zz)

* Full non-planar dilatation operator up to two loops was computed.
[Beisert ’05]

, 5 5
D1 100p ~ gYMtr(ZX5—25—X)

o If 8/6Z acts on the “vacuum” (tr(Z?))”?, D | -loop ™~ A
Otherwise 1/J suppressed.



Result

* Lightest non-BPS operator around large charge vacuum:

A—J=2+161,— 6417 + -

* Obviously, this Is an expansion of

A—J=2\/1+16/1J

* Coincides “magnon dispersion relation” in the planar limit:

Pmagnon




Result

Lightest non-BPS operator around large charge vacuum:

A—J=2+161,— 6417 + -

Obviously, this is an expansion of

A—J=2\/1+16/1J

Coincides “magnon dispersion relation” in the planar limit:

Pmagnon

Of course, we have to be scientific.

Science: Centrally extended pg1(2]2)?



Centrally-extended p3u(2|2)?

Consider a large charge BPS op and perturb it:

| X X )

Subgroup of superconformal symmetry preserved by large charge
/2 BPS state — p31(2]2)?

Excitations are classified by irreps of pdu(2|2)>.

But (as expected) it is not powerful enough to constrain the
dynamics. No gy, dependence.

The actual symmetry is larger: centrally-extended pg1(2[2)?



Centrally-extended p3u(2|2)?

* In general superconformal algebra, {Q, O} = 0.

* This is true when acting on gauge Inv states. But not true for

individual fields.

10,0y ~ £, 4]

« Maximally centrally extended psu(2|2)?
{0,S}~D—J
{Qda’ Qbﬁ} — Gabeaﬁp ’ {Saaa Sﬁb} — eabeaﬁK

P-y=[Zyl, K-y=[Z"'yl



Centrally-extended p3u(2|2)?
Q% Qbﬂ} — Gabeaﬂp, (8,87} = e K
P-y=12yl, K'){E[Z_l,)(]

e Inthe planar limit, P and K can be identified with translations on
spin chain.

* Inthe large charge 't Hooft limit, the action of P and K are
determined by VEV of Z induced by the charge.

gymVJ o 0
Z)y=1\| ~ VI
O __gymMm Jech

27

+ {0, 0y m* ~+2Am* {Q,0}m’=0. ( o+ )
0



Centrally-extended p3u(2|2)?
(0%, 0%) = ey P, {5%,8,) = e e K
{Qv S} ~ D T j

* By requiring that the centrally-extended algebra closes on

| Z...m*...Z) (BPS rep)
(D= Z..m* . 2y =A[1+16 A| Z..m*...7)

(D_j)l mO >:| mo >



Centrally-extended p3u(2|2)?
(0. 0%) = ey P, {5%,8,) = e e K
{Qv S} ~ D _ f

* By requiring that the centrally-extended algebra closes on
|Z...m™...Z) (BPS rep)

D—=DN|7Z..m*. .72y =A/14+16 A|Z..m*.. . 7)

(D—=DNZ..m®..2y=7..m°" 7)
* Jo construct a gauge Inv state, we require H# m+ =H#m"

eg | m~m~ mY m*m* )

Energy = Z individual energies A—-—J=1+ 4\/1 + 161

(interactions ~ 1/J)



Spectrum at 1/J

/%K%\h,v%

| Z..Zm m m°Z..Zm*YZ.. Zm*Z...Z)

At 1/J,there is 2-body interaction among excitations (“magnons”).
Since we are not in the planar limit, the interaction is “all-to-all”.

Centrally-extended p8u(2|2) is still powerful: It determines the
interaction Hamiltonian up to a few overall coefficient.



Relation to Standard Large Charge

g e
. 2 e

3
R, XS R4

Ay — 0 A

>
/\ Standard large
charge (gyy

b fixed)

2

N
- 4

 Centrally-extended pgu(2|2) — Centrally-extended Poincare SUSY

* BPS rep psu(2|2) — BPS particles of Poincare SUSY
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4. Higher-point functions



Higher-point functions
Consider higher-point functions (HHLLLL....)

(0000, (x))...0, (x,)0,(c0)) = {J| 0; (x))...0; (x,) | /)

Examples: light BPS tr ((Y/¢,)?), Konishi K ~ tr (¢'¢h,)

Large charge 't Hooft limit:
J10;,(xp)...0, ) | J) = <0i1(x1)---0in(xn)>large charge bkd

Basic building block: propagator in the background

O,
(DP)oka ™ Z_'_ — ZﬂkF(k)(Z,Z)

@ [Giombi, Hyman "20] k :




Propagator in the large charge bkd.

(PPdoxa = 22 FYD) @

This resummation was studied by [Broadhurst, Davydychev ’10]
without concrete physical application.

<¢¢ >bkd ~ @ _\/z cf. [Arkani-Hamed, Henn, Trnka "21]

al
We found a more refined formula: F—
- f/)%_ ) ;W(ga—k%m) + W2 — ¢+ 2mn)

Infinite sum of massive propagator in flat space; worldline instantons

[Hellerman, Orlando]
[Dondi, Kalogerakis, Orlando, Reffert]



Result for Konishi 3pt
« Using the propagator, we computed the 3pt function (O; K 0 ;)

(KNtr (¢1¢,)>
8/1+4\/_ro 4\/_W J1(8\/_W)

0 sinh?(w)

CKJJ -

« Weak coupling expansion: finite radius of convergence |A| < 1/16.

“magnon” becoming massless, tachyonic instability \/1 + 164

* Strong coupling expansion:

A A 2]«
Crir =57 (yE + log 4—ﬂ2) -= (K1<2n\/1> + Ko(zn\/%)

2
T
n=1



40 -

30 f

20 ¢

10 -

Result for Konishi 3pt




Comparison with BPS 2pt in /" = 2 SCFT
Crpy = — 81 +4v/2 ro Wi = 1@y Aw)

sinh?(w)

A A 2/ =
Ckyy = Ey=) <7’E + log E) = 2 <K1(2”\/_) + KO(Zn\/_))

n=1

* Similar integral (of Bessl J) appear in the planar limit.

[Basso, Korchemsky]

Cusp anomalous dimension, Octagon (large charge 4pt) [Bargheer, Coronado, Vieiral



Comparison with BPS 2pt in /" = 2 SCFT
Crpy = — 81 +4v/2 ro Wi = 1@y Aw)

sinh?(w)

A A 22
Ckw =73 <7E + log F) - =, <K1(2n\/_) + KO(Zn\/_)>

n=1

Similar integral (of Bessl J) appear in the planar limit.

[Basso, Korchemsky]

Cusp anomalous dimension, Octagon (large charge 4pt) [Bargheer, Coronado, Vieiral

Very similar expressions for large charge 2pt functions of Coulomb
branCh BPS OPS. [Hellerman, Maeda]

[Grassi, Komargodski, Tizzano]

There, the coefficient of log 4 is given by a-anomaly.

Here, one can show that it is given by the anomalous dim of
Konishi operator.
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5. Conclusion and future directions



Conclusion

Large charge 't Hooft limit provides an interesting solvable corner
of /' =4 SYM.

Underlying centrally extended symmetry.

Various observables can be computed exactly as a function of 4;.
J X J matrix model reformulation of integrated correlators.

cf. Gromov, Sever, Giombi, SK, Grassi, Komargodski, Tizzano...
Many more observables to study.
Heavy-heavy-heavy 3pt
Higher rank
Large spin 't Hooft limit g%M log S



/16 BPS states

Symmetry analysis can be easily extended.
We expect to have centrally-extended su(]!)

10,01 =P, {5,5}=K

Taking the standard large charge limit, this would become centrally-
extended SUSY in flat space.

Puzzle: the same is true for #/ = 1 SCFT. But the central-extension
& BPS particles normally require A > 2 SUSY.

Resolution: a typical |/16 BPS op.
2 \J o :
@ ~ tr(F++) [Choi, Kim, Lee, Lee, Park *22]

Large charge limit gives a theory In flat space with magnetic field.

Counting of BPS particles in the presence of magnetic field?
Magnetic (or“Landau’) branch instead of Coulomb branch?



