Large Charge 't Hooft Limit of $\mathcal{N}=4$ SYM

Shota Komatsu

Based on arXiv: 2306.00929 with Joao Caetano (CERN), Yifan Wang (NYU) & works / discussion in progress + Jingxiang Wu (Oxford) (1/16-BPS) Nicola Dondi (Bern), Francesco Galvagno (ETH) ("dual" description)

A big goal, dream, or hallucination Δ $N_c^{\vphantom{\dagger}}$ $\Delta \thicksim O(1)$, single-trace **Integrability**

• Integrability has been extremely powerful in determining the planar CFT data of single-trace ops.

- Integrability has been extremely powerful in determining the planar CFT data of single-trace ops.
- An important but difficult question: Understand black-hole states from field theory (beyond BPS micro-state counting). Integrability seems useless.

A big goal, dream, or hallucination

- One possible strategy: First study $\Delta \gg 1$ operators at finite N_c . (Large quantum number expansion). And combine it with insights we learned from integrability.
- For this strategy to work, at least we need to see similar features in two regimes (planar limit & large charge).

A big goal, dream, or hallucination

• Punchline: There is one common feature (for 1/2 BPS states), which constrains the dynamics in both regimes.

Centrally-extended $\mathfrak{psu}(2|2)^2$ [Beisert '06]

(A similar story likely holds also for 1/16 BPS operators)

Outline

- 1. Intro / motivation
- 2. Large charge limit vs large charge 't Hooft limit
- 3. Spectral problem at large charge
- 4. Higher-point functions
- 5. Conclusion and future directions

Outline

1. Intro / motivation

- 2. Large charge limit vs large charge 't Hooft limit
- 3. Spectral problem at large charge
- 4. Higher-point functions
- 5. Conclusion and future directions

Systems with large # of d.o.f

- Systems with large # of d.o.f often exhibit emergent phenomena.
- Two ways to introduce large # of d.o.f.
	- 1. Consider a family of theories (parametrized by " N_c ") and take . $N_c \rightarrow \infty$.
	- 2. Consider a state in a given theory in which a large number of particles are excited.
- The former is the large N_c limit. The latter is common in cond-mat.

Large # of particles

For g and N small: perturbation around free system **Effective interaction strength**

$$
\lambda_{\rm eff} \sim g\,N
$$

Large # of particles λ _{eff} ∼ *g* N

- Even if the fundamental interaction is weak $(g \ll 1)$, the sector with a large # of particles can be strongly coupled.
- Suggests a double scaling limit, λ_{eff} : fixed, and $N \to \infty$.
- Formally this looks like a 't Hooft limit…..
- Is there any similarity with the standard 't Hooft limit....?

- When viewed from fundamental strings, this is a standard large N limit of 2d theory.
- When viewed from NS5, this is a large charge state in 6d.
- \bullet It suggests that the large charge and the large N_c can be sometimes dual descriptions of the same system.
- There is also a close connection to open-closed-open triality. [Gopakumar, unpublished], [Gopakumar, Mazenc '22] [Goel, Verlinde '21], [WIP]

Set up:
$$
\mathcal{N} = 4
$$
 SYM at large charge

• 4d $\mathcal{N} = 4$ SYM with $SU(2)$ gauge group.

• 1/2 BPS operator $\text{tr}\left(\boldsymbol{\phi^{J}}\right)$ with large R-charge J and take J

$$
J \rightarrow \infty
$$
 with fixed $\lambda_J = g_{YM}^2 J$.

[Bourget,Rodriguez-Gomez, Russo'18]

• Study near BPS spectrum and correlation functions (heavy-heavylight-light etc) in this limit.

Outline

1. Intro / motivation

2. Large charge limit vs large charge 't Hooft limit

- 3. Spectral problem at large charge
- 4. Higher-point functions
- 5. Conclusion and future directions

Physics of large charge limit in CFT_d

 $\langle \mathcal{O}_J \bar{\mathcal{O}}_J \rangle$ at large charge \leftrightarrow large charge state on $R_t \times S_L^{d-1}$

 \mathcal{O}_I : minimal dim op. for a given charge J

•
$$
E_{\text{state}} = \frac{\Delta_{\min}}{L} \rightarrow e_{\text{state}} = \frac{\Delta_{\min}}{L^d}, \quad j_{\min} = \frac{J}{L^{d-1}}
$$

• Large charge limit: $J \to \infty$, $L \to \infty$ with j_{min} finite.

Lowest energy state in flat space with finite charge density.

Physics of large charge limit in CFT_d

$$
\epsilon_{\text{state}} = \frac{\Delta_{\min}}{L^d}, \quad j_{\min} = \frac{J}{L^{d-1}}
$$

• Generic (nonsupersymmetric) CFT : *^d j* state ∼ *ϵ*state ∼ *O*(1)

$$
\Delta \stackrel{J\to\infty}{\sim} J^{\frac{d}{d-1}}
$$

[Alvarez-Gaume, Cuomo, Dondi, Giombi, Hellerman, Kalogerakis, Loukas, Monin, Orlando, Pirtskhalava, Rattazzi, Reffert, Sannino, Watanabe.…]

• CFT with a moduli space of vacua: $j_{\text{state}} \sim O(1)$, $\epsilon_{\text{state}} = 0$.

e.g. BPS operator in SUSY CFT: Δ ∝ *J* [Arias-Tamargo, Beccaria, Bourget,

Hellerman, Maeda, Orlando, Rodriguez-Gomez, Reffert, Russo, Watanabe.…]

Large charge limit in SUSY CFT

- Coulomb branch chiral ring in $\mathcal{N} = 2$ SCFT $O_J = \text{tr}(\phi^J)$
- Large charge insertion \rightarrow nontrivial profile of scalar field

$$
\int \mathcal{D}\phi \exp\left(-S + J\log(\phi)\delta^d(x - x_1) + J\log(\bar{\phi})\delta^d(x - x_2)\right)
$$

• In theories with marginal coupling g_{YM} : $\langle \phi \rangle \sim g_{\text{YM}} \sqrt{J}$ The theory is effectively on the Coulomb branch.

Large charge limit in SUSY CFT

- Coulomb branch chiral ring in $\mathcal{N} = 2$ SCFT $O_J = \text{tr}(\phi^J)$
- Large charge insertion \rightarrow nontrivial profile of scalar field

$$
\int \mathcal{D}\phi \exp\left(-S + J\log(\phi)\delta^d(x - x_1) + J\log(\bar{\phi})\delta^d(x - x_2)\right)
$$

- In theories with marginal coupling g_{YM} : $\langle \phi \rangle \sim g_{\text{YM}} \sqrt{J}$ The theory is effectively on the Coulomb branch.
- Mass of BPS W-bosons: $m_W \sim g_{\text{YM}} \sqrt{J} \rightarrow \infty$ ($J \rightarrow \infty$)
- Derivative expansion of Coulomb branch EFT = $1/J$ expansion

$$
\frac{1}{p^2 + m_W^2} = \frac{1}{m_W^2} - \frac{p^2}{m_W^4} + \dots \sim \frac{\#}{J} + \frac{\#p^2}{J^2} + \dots
$$

Large charge 't Hooft limit

- Large charge limit $+$ EFT : powerful, universal predictions
- But it is insensitive to physics of massive (BPS) excitations
- Alternative limit:

[Bourget,Rodriguez-Gomez, Russo'18]

$$
J \rightarrow \infty
$$
 with $\lambda_J = g_{\text{YM}}^2 J$ fixed.

- $m_W \sim \lambda_I$ is finite. They contribute to obs even at $J \to \infty$.
- Results in the literature so far: BPS correlation functions.

[Arias-Tamargo, Beccaria, Bourget, Grassi, Komargodski, Hellerman, Maeda, Orlando, Rodriguez-Gomez, Reffert, Russo, Tizzano, Watanabe.…]

Goal: Study non-BPS (near BPS) spectrum.

Outline

- 1. Intro / motivation
- 2. Large charge limit vs large charge 't Hooft limit
- 3. Spectral problem at large charge
- 4. Higher-point functions
- 5. Conclusion and future directions

Simple weak coupling analysis

- Focus on operators made out of complex scalars *X* and *Z*.
- Thanks to the *SU*(2) trace relation, all operators are generated by

$$
tr(Z^2), tr(ZX), tr(X^2)
$$

- Near BPS operator at large charge: $(tr(Z^2))$ *J*/2 $(1 +$ corrections)
- Full non-planar dilatation operator up to two loops was computed. [Beisert '05] D 1-loop $\sim g_{\rm YM}^2$ tr(*ZX δ δZ δ* $\frac{1}{\delta X})$
- If $\delta/\delta Z$ acts on the "vacuum" $(\text{tr}(Z^2))^{J/2}$, $D_{\text{1-loop}} \sim \lambda_J$. Otherwise $1/J$ suppressed.

Result

• Lightest non-BPS operator around large charge vacuum:

$$
\Delta - J = 2 + 16\lambda_J - 64\lambda_J^2 + \cdots
$$

• Obviously, this is an expansion of

$$
\Delta - J = 2\sqrt{1 + 16\lambda_J}
$$

• Coincides "magnon dispersion relation" in the planar limit:

$$
E_{\text{magnon}} = \sqrt{1 + 16\lambda \sin^2 \frac{p_{\text{magnon}}}{2}}
$$

Result

• Lightest non-BPS operator around large charge vacuum:

$$
\Delta - J = 2 + 16\lambda_J - 64\lambda_J^2 + \cdots
$$

• Obviously, this is an expansion of

$$
\Delta - J = 2\sqrt{1 + 16\lambda_J}
$$

• Coincides "magnon dispersion relation" in the planar limit:

$$
E_{\text{magnon}} = \sqrt{1 + 16\lambda \sin^2 \frac{p_{\text{magnon}}}{2}}
$$

• Of course, we have to be scientific.

Science: Centrally extended $\mathfrak{psu}(2|2)^2$

Centrally-extended $\mathfrak{psu}(2|2)^2$

Consider a large charge BPS op and perturb it:

|*Z*…*Z χ Z*…*Z χ Z*…*Z*⟩

- Subgroup of superconformal symmetry preserved by large charge $1/2$ BPS state \rightarrow $\mathfrak{psu}(2|2)^2$
- Excitations are classified by irreps of $\mathfrak{psu}(2|2)^2$.
- But (as expected) it is not powerful enough to constrain the dynamics. No g_{YM} dependence.
- The actual symmetry is larger: centrally-extended $\mathfrak{psu}(2|2)^2$

Centrally-extended $\mathfrak{psu}(2|2)^2$

• In general superconformal algebra, $\{Q, Q\} = 0$.

• This is true when acting on gauge inv states. But not true for individual fields.

$$
\{Q,Q\}\chi\sim [Z,\chi]
$$

• Maximally centrally extended $\mathfrak{psu}(2|2)^2$

$$
\{Q, S\} \sim D - \hat{J}
$$

\n
$$
\{Q^a_{\alpha}, Q^b_{\beta}\} = \epsilon^{ab} \epsilon_{\alpha\beta} P, \quad \{S^a_{\alpha}, S^{\beta}_{\beta}\} = \epsilon_{ab} \epsilon^{\alpha\beta} K
$$

\n
$$
P \cdot \chi \equiv [Z, \chi], \quad K \cdot \chi \equiv [Z^{-1}, \chi]
$$

Centrally-extended
$$
\mathfrak{psu}(2|2)^2
$$

\n $\{Q^a_{\alpha}, Q^b_{\beta}\} = \epsilon^{ab} \epsilon_{\alpha\beta} P, \quad \{S^a_{\alpha}, S^{\beta}_{\beta}\} = \epsilon_{ab} \epsilon^{\alpha\beta} K$
\n $P \cdot \chi \equiv [Z, \chi], \quad K \cdot \chi \equiv [Z^{-1}, \chi]$

- In the planar limit, P and K can be identified with translations on spin chain. ially charged¹⁵ with respect to *P*. As we see later in section ??, the scalar expectation value p*J*
- In the large charge 't Hooft limit, the action of P and K are determined by *NEV* of Z induced by the charge determined by VEV of Z induced by the charge.

$$
\langle Z \rangle = \begin{pmatrix} \frac{g_{\text{YM}}\sqrt{J}}{2\pi} e^{i\varphi} & 0\\ 0 & -\frac{g_{\text{YM}}\sqrt{J}}{2\pi} e^{i\varphi} \end{pmatrix}
$$

 e^{λ} *el*(*y, y im* \sim \pm *2<i>xm*, *ey, y im = 0.* \qquad *m⁰ m⁺* \qquad • ${Q, Q}$ $m^{\pm} \sim \pm 2\lambda m^{\pm}$, ${Q, Q}$ $m^0 = 0$.

P respectively while the diagonal components are uncharged¹⁶:

•
$$
\{Q, Q\} m^{\pm} \sim \pm 2\lambda m^{\pm}, \{Q, Q\} m^0 = 0
$$
.

$$
\chi = \begin{pmatrix} m^0 & m^+ \\ m^- & -m^0 \end{pmatrix}
$$

⁼ *[±]*2*geⁱ*' *^m[±] , P · ^m*⁰ = 0 *.* (3.11)

Centrally-extended
$$
\mathfrak{psu}(2|2)^2
$$

\n $\{Q^a_{\alpha}, Q^b_{\beta}\} = \epsilon^{ab} \epsilon_{\alpha\beta} P, \quad \{S^a_{\alpha}, S^{\beta}_{\beta}\} = \epsilon_{ab} \epsilon^{\alpha\beta} K$
\n $\{Q, S\} \sim D - \hat{J}$

• By requiring that the centrally-extended algebra closes on $|Z...m^{\pm}...Z\rangle$ (BPS rep)

$$
(D - \hat{J}) | Z \dots m^{\pm} \dots Z \rangle = \sqrt{1 + 16 \lambda} | Z \dots m^{\pm} \dots Z \rangle
$$

$$
(D - \hat{J}) | Z \dots m^0 \dots Z \rangle = | Z \dots m^0 \dots Z \rangle
$$

Centrally-extended
$$
\mathfrak{psu}(2|2)^2
$$

\n $\{Q^a_{\alpha}, Q^b_{\beta}\} = \epsilon^{ab} \epsilon_{\alpha\beta} P, \quad \{S^a_{\alpha}, S^{\beta}_{\beta}\} = \epsilon_{ab} \epsilon^{\alpha\beta} K$
\n $\{Q, S\} \sim D - \hat{J}$

• By requiring that the centrally-extended algebra closes on $|Z...m^{\pm}...Z\rangle$ (BPS rep)

$$
(D - \hat{J}) | Z \dots m^{\pm} \dots Z \rangle = \sqrt{1 + 16 \lambda} | Z \dots m^{\pm} \dots Z \rangle
$$

$$
(D - \hat{J}) | Z \dots m^0 \dots Z \rangle = | Z \dots m^0 \dots Z \rangle
$$

To construct a gauge inv state, we require $\# m^+=\# m^-$

e.g.
$$
|Z...Zm^{-}m^{-}m^{0}Z...Zm^{+}m^{+}Z...Z\rangle
$$

 $\Delta - J = 1 + 4\sqrt{1 + 16\lambda}$ (interactions $\sim 1/J$) Energy = \sum individual energies

Spectrum at 1/*J*

|*Z*…*Z m*[−] *m*[−] *m*⁰ *Z*…*Z m*⁺ *Z*…*Z m*⁺ *Z*…*Z*⟩ $\hbar \sim$ *J*

1

- At 1/*J*, there is 2-body interaction among excitations ("magnons").
- Since we are not in the planar limit, the interaction is "all-to-all".
- Centrally-extended $\mathfrak{psu}(2|2)$ is still powerful: It determines the interaction Hamiltonian up to a few overall coefficient.
- ℓ_c $\frac{\rho_{C}}{L} \sim \frac{1}{\sqrt{\lambda_{G}}}$ 3. Symp^{Standard large} symmetry at large charge 2.4 \mathbb{S} uperconformal index and partition at \mathbb{R}^4 function at ں
9 بار مار میمار $2\sqrt{8}$ sector: operators and magnons \cdots . $2.2 \quad \text{SU(3)} \text{ sector: parity projection} \quad . \quad . \quad . \quad . \quad . \quad .$ 2.3 SL(2) sector: bound states . 22 33. Symbynt metry and its cent thal extension get the $3.1.1$ fixed 2.1 artengion and $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{2}$ $3.1.2$ Central extension and its representation 3.1.3 Gauge invariant operators and comparis 3.1.4 Relation to Poincaré supersymmetry . ℓ_c $\overline{}$ \mathcal{L} *J* 2
*J*_{ITV} 8 2.4 Superconformal index and partition func $(2|2)$ \cup 2.2 SU(3) sector: parity projection . 18 Relationstof Standard operators and enemons 3 Symmetry and spectrum at leading large 3.5 yn Synt \mathbf{part} metry and its central extension get in the large \mathbf{H} $3.1.2$ Central extension and its representation $3, 1, 3$ Gauge invariant operators and comparison \mathbb{R}^3 . $\overline{3,1.4}$ Relation to Poincaré supersymmetry $\overline{1,1}$ *c* Standard large. charge (*g*YM fixed)
- \mathbb{Z}^{12} \mathbb{C}^{13} \mathbb{H}^{16} \mathbb{C}^{13} \mathbb{C}^{5} \mathbb{C}^{1111} any-extended Tomical e JOJT -exte stendes hault 1, 2) in Centrally-extended Poincare SUSY saro o
tender • Centrally-extended part (212) => Centrally-extended Poincare SUSY
- $4S$ **Spectrum at** $1/\sqrt{J}$ \mathbf{F} Dpccu unit au $1/J$ \cdot RPS representation \cdot RPS particles of Poincare SLISY • BPS rep $\mathfrak{psu}(2|2) \rightarrow$ BPS particles of Poincare SUSY 4 4 Spectrum at $1/$ $/J$ \cdot BPS representation $(2|2) \rightarrow$ BPS particles of Poincare SUSY • BPS rep $\mathfrak{psu}(2|2) \to$ BPS particles of Poincare SUSY
1 4 SS regists at 1 if J

Outline

- 1. Intro / motivation
- 2. Large charge limit vs large charge 't Hooft limit
- 3. Spectral problem at large charge

4. Higher-point functions

5. Conclusion and future directions

Higher-point functions The solution to this equation has already been worked out in $[3]$. One considers an expansion of \mathcal{S}

- Consider higher-point functions (HHLLLL….) $\langle O_J(0)O_{i_1}(x_1)...O_{i_n}(x_n)O_J(\infty)\rangle = \langle J|O_{i_1}(x_1)...O_{i_n}(x_n)|J\rangle$ \mathcal{X}_1)... \mathbf{U}_i (\mathcal{X}_n) | J \mathcal{Y}_i
- Examples: light BPS $\text{tr}\left((Y^I\phi_I)^{\ell}\right)$, Konishi $K\thicksim \text{tr}\left(\phi^I\phi_I\right)$
- Large charge 't Hooft limit: $\langle J | O_{i_1}(x_1)...O_{i_n}(x_n) | J \rangle \rightarrow \langle O_{i_1}(x_1)...O_{i_n}(x_n) \rangle$ large charge bkd *cnarge bkd x*⁺ *y[±]*
- Basic building block: propagator in the background where we defined *zk*+1 ⌘ *y*. More explicitly, this is equivalent to

Propagator in the large charge bkd. $\langle \phi \phi \rangle_{\rm bkd}$ *k* $\langle \phi \phi \rangle_{\text{hkd}} = \sum_{\lambda} \lambda^k F^{(k)}(z, \bar{z}) \longrightarrow$ *x*⁺ *y ... y x*2 = Propagator in the large charge hkd coupling expansion in contribution in δ p*a*2+16*g*²

• This resummation was studied by [Broadhurst, Davydychev '10] tegrated external points. The conformal cross-ratios *z, z*¯ are given by without concrete physical application. ridlic
Cret is studied by **Broadhurst** adhurst, Davydychev '10]
,

$$
\langle \phi \phi \rangle_{\text{bkd}} \sim e^{-\sqrt{\lambda}} \quad \text{cf. [Arkani-Hamed, Henn, Trnka '21]}
$$

(*^x ^x*1)²(*^y ^x*2)² *,* (1 *^z*)(1 *^z*¯) ⌘ (*x*¹ *^x*2)²(*^x ^y*)² ⟨*ϕϕ*⟩bkd ∼ *e*[−] *^λ* cf. [Arkani-Hamed, Henn, Trnka '21]

• We found a more refined formula: $\frac{(1-z)(1-\bar{z})}{\sqrt{z}}$ $\frac{1}{\sqrt{z\bar{z}}}$ \sum $\frac{\infty}{\frac{1}{\cdot}}$ *n*=0 $W(\varphi + 2\pi n) + W(2\pi - \varphi + 2\pi n)$ W ^{(\overline{V}} $xK_1(\cdot)$ $W(x) = \frac{\lambda N_1(V)}{\sin x}$ $xK_1(\sqrt{\lambda}\sqrt{x^2+\sigma^2})$ $\sin x\sqrt{x^2 + \sigma^2}$

• Infinite sum of massive propagator in flat space worldline instantons $\lbrack \textsf{Donald}, \textsf{Kalogerakis}, \textsf{Orlando}, \textsf{Reffert} \rbrack$ • Infinite sum of massive propagator in flat space; worldline instantons [Hellerman, Orlando]

Result for Konishi 3pt

Using the propagator, we computed the 3pt function $\langle O_I K O_I \rangle$ $(K \sim \text{tr}\left(\phi^I \phi_I\right))$

$$
C_{KJJ} = -8\lambda + 4\sqrt{\lambda} \int_0^\infty dw \frac{4\sqrt{\lambda}w - J_1(8\sqrt{\lambda}w)}{\sinh^2(w)}
$$

- Weak coupling expansion: finite radius of convergence $|\lambda| < 1/16$. "magnon" becoming massless, tachyonic instability $\sqrt{1 + 16\lambda}$
- Strong coupling expansion:

$$
C_{KJJ} = \frac{\lambda}{2\pi^2} \left(\gamma_E + \log \frac{\lambda}{4\pi^2} \right) - \frac{2\lambda}{\pi^2} \sum_{n=1}^{\infty} \left(K_1(2n\sqrt{\lambda}) + K_0(2n\sqrt{\lambda}) \right)
$$

Result for Konishi 3pt

Comparison with BPS 2pt in $\mathcal{N}=2$ SCFT

$$
C_{KJJ} = -8\lambda + 4\sqrt{\lambda} \int_0^\infty dw \frac{4\sqrt{\lambda}w - J_1(8\sqrt{\lambda}w)}{\sinh^2(w)}
$$

$$
C_{KJJ} = \frac{\lambda}{2\pi^2} \left(\gamma_E + \log \frac{\lambda}{4\pi^2}\right) - \frac{2\lambda}{\pi^2} \sum_{n=1}^\infty \left(K_1(2n\sqrt{\lambda}) + K_0(2n\sqrt{\lambda})\right)
$$

• Similar integral (of Bessl *J*) appear in the planar limit.

Cusp anomalous dimension, Octagon (large charge 4pt) [Basso, Korchemsky] [Bargheer, Coronado, Vieira]

Comparison with BPS 2pt in $\mathcal{N}=2$ SCFT

$$
C_{KJJ} = -8\lambda + 4\sqrt{\lambda} \int_0^\infty dw \frac{4\sqrt{\lambda}w - J_1(8\sqrt{\lambda}w)}{\sinh^2(w)}
$$

$$
C_{KJJ} = \frac{\lambda}{2\pi^2} \left(\gamma_E + \log\frac{\lambda}{4\pi^2}\right) - \frac{2\lambda}{\pi^2} \sum_{n=1}^\infty \left(K_1(2n\sqrt{\lambda}) + K_0(2n\sqrt{\lambda})\right)
$$

Similar integral (of Bessl J) appear in the planar limit.

Cusp anomalous dimension, Octagon (large charge 4pt) [Basso, Korchemsky] [Bargheer, Coronado, Vieira]

- Very similar expressions for large charge 2pt functions of Coulomb branch BPS ops. [Hellerman, Maeda] [Grassi, Komargodski, Tizzano]
- There, the coefficient of log *λ* is given by *a*-anomaly.
- Here, one can show that it is given by the anomalous dim of Konishi operator.

Outline

- 1. Intro / motivation
- 2. Large charge limit vs large charge 't Hooft limit
- 3. Spectral problem at large charge
- 4. Higher-point functions
- 5. Conclusion and future directions

Conclusion

- Large charge 't Hooft limit provides an interesting solvable corner of $\mathcal{N}=4$ SYM.
- Underlying centrally extended symmetry.
- Various observables can be computed exactly as a function of λ_L *J* \times *J* matrix model reformulation of integrated correlators. cf. Gromov, Sever, Giombi, SK, Grassi, Komargodski, Tizzano…
- Many more observables to study.

Heavy-heavy-heavy 3pt Higher rank Large spin 't Hooft limit $g_{\rm YM}^2 \log S$

1/16 BPS states

• Symmetry analysis can be easily extended.

We expect to have centrally-extended su(III)

 ${Q, Q} = P$, ${S, S} = K$

- Taking the standard large charge limit, this would become centrallyextended SUSY in flat space.
- Puzzle: the same is true for $\mathcal{N}=1$ SCFT. But the central-extension & BPS particles normally require $\mathscr{N}\geq 2$ SUSY.
- Resolution: a typical 1/16 BPS op. $\mathscr{O} \thicksim \text{tr}(F_{++}^2)^J$ [Choi, Kim, Lee, Lee, Park '22]
- Large charge limit gives a theory in flat space with magnetic field.
- Counting of BPS particles in the presence of magnetic field? Magnetic (or "Landau") branch instead of Coulomb branch?