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Bekenstein-Hawking formula for black hole entropy is universal

S0 =
A
4

in ~ = c = GN = kB = 1 unit

A: area of the event horizon

In Einstein-Maxwell theory or (extended) supergravity, the black
hole can carry electric charges Q, magnetic charges P, angular
momentum J3 and mass M

Then
S0 = f0(Q,P,M,J3)

In D=4,
f0(λQ, λP, λM, λ2J3) = λ2 f0(Q,P,M,J3)

For D>4, there are different scaling laws, but we shall stick to
D=4 for this talk

Q,P: n-dimensional vectors if we have n U(1) gauge fields 2



f0(λQ, λP, λM, λ2J3) = λ2 f0(Q,P,M,J3)

To take macroscopic limit, we parametrize M, Q, P, J3 as

M = mλ, Q = qλ, P = pλ, J3 = jλ

and take λ large, keeping m,q,p,j fixed

Then
S0 = λ2 f0(q,p,m, j)

In this limit the fields associated with the black hole also has
simple dependence on λ, e.g.

gµν(Q,P,M,J3) = λ2 gµν(q,p,m, j)
3



The Bekenstein-Hawking formula is expected to receive
corrections due to stringy effects and quantum effects

General structure:

S = λ2 f0 + (lnλ) f1 + f2 + · · ·

f0, f1, f2, · · · are all functions of m,q,p,j

In the large λ limit the dominant correction is the term
proportional to lnλ

– focus of attention in today’s lecture 4



General procedure for computing corrections to the black hole
entropy (Gibbons-Hawking)

1. Perform a path integral over all fields subject to the same
boundary condition that the black hole satisfies

– gives partition function

2. Construct the entropy from the partition function using the
usual rules of statistical mechanics

e.g. for asymptotically flat black holes, the gravitational path
integral gives grand canonical partition function

– need to take appropriate Laplace transform to get the
microcanonical entropy

Both steps can generate logarithmic corrections to the entropy
A.S.: arXiv:1205.0971
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Logarithmic corrections
from the change of

ensemble
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Consider a black hole in flat space-time carrying charge and
angular momentum along 3-axis

Euclidean continuation leads to a conical singularity at the
horizon, unless

1. The euclidean time τ and the azimuthal angle φ are
periodically identified as

(τ, φ) ≡ (τ + β, φ+ iωβ)

2. The time components of the gauge fields take asymptotic
values

Aτ = iµ

β, ω, µ are fixed in terms of M,Q,P,J3 for classical black hole

Interpretation: Gibbons, Hawking

β = inverse temperature, ω = chemical potential dual to J3

µ = chemical potential dual to Q 7



Scaling:

β ∼ ∂S0

∂M
∼ λ, µ ∼ 1

β

∂S0

∂Q
∼ 1, ω ∼ 1

β

∂S0

∂J3
∼ λ−1

In quantum theory we treat β, ω, µ,P as independent variables

– modes that change these values are dominant at∞ compared
to the modes that change M, Q, J3

e.g. β fixes the constant part of gττ while M fixes the coefficient
of 1/r in gττ

Therefore the gravitational path integral with these boundary
conditions give the grand canonical partition function:

Z = Tr
[
e−βE−βµQ−βωJ3

]
8



Z =

∫
dM dQ dJ3 dk e[S−βM−βk2/2M−βωJ3−βµQ]

eS counts number of states with fixed mass, charge, J3 but all ~J
2

k = kz since e−βωJ3 rotates (kx,ky)→ (k′x,k′y) and hence
(kx,ky) 6= 0 states do not contribute to the trace

The contribution to the integral is dominated by the Euclidean
black hole saddle point, where

k = 0,
∂S
∂M

= β,
∂S
∂Q

= βµ,
∂S
∂J3

= βω

At the leading order S = S0 and we get back the classical
relation between β, µ, ω and M,Q,J3. 9



Z =

∫
dM dQ dJ3 dk e[S−βM−βk2/2M−βωJ3−βµQ]

To keep track of the logarithmic corrections, we need to evaluate
the gaussian integrals around the saddle point.

1. Since β ∼ λ, M ∼ λ, the coefficient of k2 is λ independent.

⇒ k integral does not generate any a dependent factor

2. S0 ∼ λ2, Q,M ∼ λ ⇒ ∂2S0/∂M2 ∼ λ0, ∂2S0/∂Q2 ∼ λ0

⇒ Q, M integrals do not generate any λ dependent factor

3. S0 ∼ λ2, J3 ∼ λ2 ⇒ ∂2S0/∂J2
3 ∼ λ

−2

⇒ J3 integral generates a factor of λ

ln Z ' S− βM− βωJ3 − βµQ + lnλ
10



S ' ln Z + βM + βωJ3 + βµQ− lnλ

M,Q,J3 are determined by their saddle point values

⇒ follows the classical relation:

∂S0

∂M
= β,

∂S0

∂Q
= βµ,

∂S0

∂J3
= βω

Note: eS counts the number of states with fixed J3 but all ~J
2
.

To find the number of states with fixed ~J
2

we need to calculate

eSmicro(J) = eS(J3=J) − eS(J3=J+1)

e.g. for J = 0 we get another 1/λ2 in the expression for eSmicro ,
and hence −2 lnλ in the expression for Smicro 11



Logarithmic corrections
to the partition function
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S ' ln Z + βM + βωJ3 + βµQ− lnλ

Leading order contribution Z0 to Z is e−I0

I0: classical action of the Euclidean black hole

S = −I0 + βM + βωJ3 + βµQ− lnλ+ δ ln Z = S0 − lnλ+ δ ln Z

S0: Bekenstein-Hawking result

δ ln Z: corrections to Z

Our goal will be to pick up the logarithmic terms among the
corrections to ln Z. 13



Stringy effects and quantum corrections involving loops of
massive fields generate local corrections to the effective action

– expressed as an expansion in number of derivatives

Such corrections cannot generate logarithmic corrections to ln Z

Source of logarithmic corrections to ln Z is non-local correction
to the effective action due to loops of massless fields

Fursaev, Solodukhin, · · · , Review: arXiv:1104.3712 by Solodukhin

A simple power counting can be used to show that only one loop
effects can generate terms ∝ ln λ 14



KB: Kinetic operator for massless bosonic fields

KF: Kinetic operator for massless fermionic fields

κb, κf: eigenvalues of KB,KF

One loop contribution to Z from massless fields:

(det KB)
−1/2(det KF)

1/2 =
∏

b

κ
−1/2
b

∏
f

κ
1/2
f

Correction to ln Z:

δln Z =
1
2

[∑
b

lnκb −
1
2

∑
f

lnκ2
f

]
=

1
2

∫ ∞
ε

ds
s

[∑
b

e−sκb − 1
2

∑
f

e−sκ2
f

]
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δ ln Z =
1
2

∫ ∞
ε

ds
s

[∑
b

e−sκb − 1
2

∑
f

e−sκ2
f

]

Scaling⇒ κb = κ0
b/λ

2, κf = κ0
f /λ with λ independent κ0

b, κ0
f

Defining u = s/λ2 we get

δ ln Z =
1
2

∫ ∞
ε/λ2

du
u

[∑
b

e−uκ0
b − 1

2

∑
f

e−u(κ0
f )

2

]

1. Expand F(u) ≡
[∑

b e−uκ0
b − 1

2
∑

f e−u(κ0
f )

2
]

in power series in u

2. Pick the coefficient C of the u0 term

δ ln Z =
C
2

lnλ2 + · · ·
16



δ ln Z =
C
2

lnλ2 + · · ·

Using heat kernel expansion C can be expressed as

C =

∫
d4x K(x)

K(x) is determined in terms of KB and KF
Seeley; de Witt; · · · ; Vassilevich hep-th/0306138

– depends on the background metric and gauge field
configurations

e.g. for a minimally coupled scalar,

K(x) =
1

360× 16π2

[
12DµDµR + 5R2 − 2RµνRµν + 2RµνρσRµνρσ

]
17



Zero mode contribution:

KB and / or KF may have zero eigenvalues

– cannot be treated as part of the determinant

1. Remove their contribution from δ ln Z

e.g. a bosonic mode contributes (κ0
b/λ

2)−1/2 to Z

⇒ lnλ to ln Z

We need to subtract (ln λ) from δln Z for each bosonic zero mode

Similarly we add (ln λ)/2 for each fermionic zero mode 18



2. We need to find the actual λ dependent contribution to Z from
the zero mode integrals

Zero modes typically arise from some broken symmetries

e.g. the black hole breaks translation symmetry

⇒ deformation of the background associated with translation of
the black hole generates a zero eigenvalue of KB 19



i) We change integration variable from field to symmetry
parameter

– gives a jacobian that could have factors of λ

ii) We find the range of integration of the symmetry parameter
and determine the λ dependence of the range

⇒ λ dependent result

Product⇒ net λ dependent contribution to Z from zero mode
integral 20



Example: Suppose hµν ≡ δgµν is the deformation associated
with translation zero mode

We take integration measure over hµν to be [d(λαhµν)] so that∫
[d(λαhµν)]exp

[
−
∫

d4x
√

detg gµρgνσ hµνhρσ
]
∼ 1

Since
√

detg gµρgνσ scales as λ0, we have α = 0

Now the translation by cµ is generated by a diffeomorphism
parameter cµf(x) for some λ-independent f(x) that vanishes at
the horizon and approaches 1 at∞

We change variable from hµν to cµ using

hµν = Dµ(cνf(x)) + Dν(cµf(x))

Lowering of the index of cµ gives a factor of λ2 since gµν ∼ λ2

Jacobian ∼ λ2
21



Next we have to find the range of cµ

If we put the system in a box of physical size L, then the range of
coordinates is of order L/λ since gµν ∼ λ2

Range of cµ is of order L/λ

⇒ Zero mode integration⇒ λ2 × λ−1 ∼ λ = exp[lnλ]

A similar analysis can be done for other zero modes

Note: We also need to make sure that the zero mode
deformations are compatible with

(τ, φ) ≡ (τ + β, φ+ ωβ)

– eliminates rotational zero modes and translational zero modes
transverse to the rotation axis for Kerr-Newmann black hole 22



Using this method one can compute the logarithmic correction
to the entropy of any black hole

e.g. for Scwarzschild black hole in D=4,

Smicro = S0 + (C− 3)lnλ = S0 +

(
212
45
− 3
)

lnλ

There is no microscopic counting in string theory against which
we can check this. 23



Supersymmetric black
holes

24



Supersymmetric (extremal) black holes have zero temperature

⇒ instead of having a single large length scale, we have two
different large scales

M, Q ∼ λ and β = 1/T→∞

Remedy: Work in the near horizon geometry AdS2 × S2

Mann, Solodukhin hep-th/9604118; · · ·

ds2 = v1

(
dr2

r2 − 1
+ (r2 − 1)dτ2

)
+ v2

(
dθ2 + sin2 θdφ2

)
v1,v2 ∼ λ2

We can compute logarithmic correction to the partition function
in this geometry following the same guidelines 25



Some differences:

1. The partition function computes the path integral at fixed
mass, charge and angular momentum (=0) since these modes
dominate as r→∞, e.g.

Aτ = Q r + µ⇒ the coefficient of Q grows faster than that of µ

Result: The path integral directly computes the entropy in the
microcanonical ensemble and no change of ensemble is needed.

2. We integrate over modes living in the near horizon geometry

– different set of eigenvalues and eigenfunctions than those in
the full geometry

26



Logarithmic corrections come from:

1. Non-zero modes

⇒ lnλ×
∫

AdS2×S2 K(x)

2. Zero modes

The structure of the zero modes in the near horizon geometry is
quite different from that in the full geometry

But the general procedure for finding (ln λ) terms remains the
same. 27



Final result in theories with N ≥ 2 supersymmetry:

S = S0 +
1
6
(23 + nH − nV) lnλ for N=2

nH,nV: number of vector and hypermultiplets

S = S0 for N=4

S = S0 − 8 lnλ for N=8

Banerjee, Gupta, A.S. arXiv:1005.3044, Banerjee, Gupta, Mandal, A.S. arXiv:1106.0080

A.S. arXiv:1108.3842

The results are in perfect agreement with microscopic counting
formula for N=4 CHL type compatifications and N=8
compactifications

Maldacena, Moore, Strominger hep-th/9903163; Dijkgraaf, Verlinde, Verlinde hep-th/9607026;

David, A.S. hep-th/0605210; David, Jatkar, A.S. hep-th/0609109

No microscopic counting exists for black holes in N=2 theories 28



Recent developments
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Iliesiu, Kologlu and Turiaci described a procedure for computing
supersymmetric index using full black hole geometry

Iliesiu, Kologlu, Turiaci arXiv:2107.09062

Supersymmetric index:

I = TrQ,P
[
e−βH(−1)F(2J3)

n]
The trace is taken over states at fixed Q, P

2n: number of supersymmetries broken by the black hole

(2J3)
n is needed to saturate the trace over the supermultiplet

Bachas, Kiritsis hep-th/9611205; Gregori, Kiritsis, Kounnas, Obers, Petropoulos, Pioline hep-th/9708062

The result is expected to be β independent and pick up the
degeneracy of the supersymmetric states

– counted in N = 4,8 supersymmetric theories 30



Consider the gravitational partition function with βω = 2πi and
(2J3)

n inserted

Z = TrP

[
e−βH−µQ−2πiJ3(2J3)

n
]
= TrP

[
e−βH−µQ(−1)F(2J3)

n
]

Note: The trace is over all J3, Q, k

We take β, µ ∼ λ so that there is only one scale as before

Compare this with the index

I = TrQ,P
[
e−βH(−1)F(2J3)

n]
In both we sum over J3 and hence no ensemble change is
needed for this

In the index I we take the trace for fixed Q, k, while in Z we
integrate over Q, k keeping µ fixed

– need to change ensemble, but in D=4 this does not produce
(ln λ) 31



Conclusion of this analysis:

Logarithmic correction to the gravitational partition function Z
with βω = 2πi and (2J3)

n inserted

⇒ logarithmic correction to the supersymmetric index of the
black hole.

As before, the logarithmic corrections to Z come from both
non-zero modes and zero modes of massless fields.

Does this agree with the computation based on the near horizon
geometry? 32



Non-zero mode contribution is C ln λ with

C =

∫
full geometry

d4x K(x)

A surprise: All terms involving background gauge fields can be
expressed in terms of the metric using equations of motion

In N ≥ 2 supergravity, K(x) is proportional to the Gauss-Bonnet
term Charles, Larsen arXiv:1505.01156; Karan, Panda arXiv:2012.12227

⇒
∫

d4x K(x) takes the same value in the

– full geometry at finite β

– the near horizon geometry AdS2 × S2 geometry at β =∞

since they have the same topology 33



The structure of the zero modes in the near horizon geometry
and the full geometry are quite different

e.g. in the near horizon geometry there are infinite number of
zero modes while in the full geometry there are a finite number
of them

1. Integration over the translational zero modes produces ln λ
for each zero mode

– cancelled by the ln λ that we need to subtract for each bosonic
zero mode

2. Each of the two rotational zero modes produces 2 ln λ

After subtracting ln λ for each mode we are left with lnλ per zero
mode

3. Each gravitino zero mode contributes − 1
2 lnλ+ 1

2 lnλ = 0 34



Final result: Logarithmic correction from the zero modes are the
same in the near horizon geometry and the full geometry

The (2J3)
n factor ensures that we get a finite answer after

integrating over the goldstino zero modes associated with
broken supersymmetry

⇒ the index computed from the full geometry correctly
reproduces the microscopic results when they are known

e.g. in N=4,8 supersymmetric theories 35



Conclusion

36



Although this analysis has only reproduced known results, the
agreement is significant due to several reasons:

1. The computation using the full geometry uses integration
over the same set of modes as that for non-supersymmetric
black holes

– gives us confidence in the results for non-supersymmetric
black holes for which there is no independent test of the formula

2. In principle, the computation using the full geometry can be
used to take into account all configurations that contribute to
the index

e.g. multi-centered black holes

3. This formalism may be better suited for exact computation of
supersymmetric index from gravitational path integral, e.g. via
localization 37


