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Motivation

Supersymmetric localization allows for the exact calculation of physical
observables in supersymmetric QFTs.

Apply this tool to SCFTs with holographic duals in string and M-theory.

ZCFT[J ] = Zstring/M[ϕ]

Focus on subleading terms in the large N expansion to learn about quantum
corrections to the supergravity approximation.

A new handle on AdS vacua of string and M-theory with non-trivial fluxes.

Learn about quantum corrections to black hole thermodynamics.

Goal: Describe recent progress on these topics for 3d SCFTs with AdS4 duals in
M-theory.
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The ABJM theory on S3



ABJM and holography
The ABJM theory: U(N)k × U(N)−k CS-matter theory with two pairs of
bi-fundamental chirals (A1,2, B1,2) and superpotential

W = Tr(A1B1A2B2 −A1B2A2B1) .

For k > 2 it has N = 6 supersymmetry and SU(4)R × U(1)b global symmetry.
Describes N M2-branes on C4/Zk.

In the limit of fixed k and large N , the ABJM theory is dual to the
M-theory background AdS4 × S7/Zk

(L/ℓP)6 ∼ kN .

At large k and fixed ’t Hooft coupling λ = N/k the theory is dual to type
IIA string theory on AdS4 × CP3

k gst = L/ℓs ∼ λ1/4 .

Perturbative type IIA string theory at large k and small gst, i.e. fixed λ
and large N .
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ABJM on S3

The path integral on S3 can be computed by supersymmetric localization and
reduces to a matrix model [Kapustin-Willett-Yaakov]

Z(N, k) = 1
N !2

∫
dNµ

(2π)N

dNν

(2π)N
exp

[
ik
4π

N∑
i=1

(µ2
i − ν2

i )

]
Πi<j

[
2 sinh( µi−µj

2 )
]2 [

2 sinh( νi−νj

2 )
]2

Πi,j

[
2 cosh( µi−νj

2 )
]2

Three methods have been used to study Z(N, k) at large N
1 Map to CS theory on S3/Z2 (or topological strings on P1 × P1) and solve

with large N techniques. Applies at large N , fixed N/k.[Drukker-Mariño-Putrov]

2 Study the large N limit at fixed k numerically.[Herzog-Klebanov-Pufu-Tesileanu]

3 Map the problem to a free Fermi gas on the real line with non-standard
kinetic term. Valid at large N and finite k.[Mariño-Putrov]
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ABJM at large N - An Airy tale
At large N and fixed k the S3 partition function of the ABJM theory is
[Mariño-Putrov], [Fuji-Hirano-Moriyama]

ZS3 = eA(k)C− 1
3 Ai[C− 1

3 (N −B)] + O(e−
√

N ) ,

with
B = k

24 + 1
3k , C = 2

π2k
,

and

A(k) = 2ζ(3)
π2k

(
1 − k3

16

)
+ k2

π2

∫ ∞

0

x log
(
1 − e−2x

)
ekx − 1 dx

= − ζ(3)
8π2 k

2 + 2ζ′(−1) + 1
6 log 4π

k
+
∑
n≥2

(2π
k

)2n−2 (−4)n−1B2nB2n−2

n(2n− 2)(2n− 2)! .

The large N expansion takes the explicit form

− logZS3 = 2
3
√
C
N

3
2 − B√

C
N

1
2 + 1

4 logN − A(k) + 1
4 log 32

k
+ O(N− 1

2 ) .
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ABJM at large N - An Airy tale
This can be reorganized à la ’t Hooft into a type IIA string theory expansion

FS3 = −
∑
g≥0

(2πiλ)2g−2Fg(λ)N2−2g .

The genus g type IIA free energies can be computed systematically (up to
e−

√
λ corrections) and read (agrees with topological string results)

F0(λ) = 4π3√
2

3 λ̂
3
2 + ζ(3)

2 ,

F1(λ) = π

3
√

2
λ̂

1
2 − 1

4 log λ̂+ 1
6 log λ+ 1

12 log π
2

32 + 2ζ′(−1) − 1
2 log 2 ,

F2(λ) = 5 λ̂− 3
2

96π3
√

2
− λ̂−1

48π2 + λ̂− 1
2

144π
√

2
− 1

360 ,

F3(λ) = 5 λ̂−3

512π6 − 5 λ̂− 5
2

768π5
√

2
+ λ̂−2

1152π4 − λ̂− 3
2

10368π3
√

2
− 1

22680 ,

where
λ̂ = λ− 1

24 .



ABJM on S3 and holography

These results are prime targets for string/M-theory and AdS4 holography!

− logZS3 = π
√

2k
3 N

3
2 − π

3
√

2

(1
8k

3
2 + k− 1

2

)
N

1
2 + 1

4 logN + ... .

From the on-shell action of the AdS4 ×X7 supergravity solution one finds

FS3 = − logZS3 =
√

2π6

27vol(X7)N
3
2 .

Plug in vol(S7/Zk) = π4

3k
to find a match with the localization result.

The N 1
2 term can be derived using the on-shell action of four-derivative

gauged supergravity.[NPB-Charles-Hristov-Reys]

The logN term is obtained by summing over the KK modes around
AdS4 × S7.[Bhattacharyya-Grassi-Mariño-Sen]

Note: Derive the full Airy function using supersymmetric localization in
supergravity on AdS4?[Dabholkar-Drukker-Gomes]
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Adding sources
Natural to consider deformations of the theory that preserve supersymmetry
and break conformal invariance.

The ABJM S3 partition function with a U(1) × U(1) invariant squashing and
real mass deformation takes the form [NPB-Hong-Reys], [Nosaka], [Hatsuda], [Hristov],

[Chester-Kalloor-Sharon], [Minahan-Naseer-Thull]

ZS3 (N, k,∆, b) = eA(k,∆,b)C
− 1

3
k Ai[C− 1

3
k (N −Bk)] + O(e−

√
N )

with

Ck = 2
π2k

(b+ b−1)−4∏4
a=1 ∆a

, Bk = k

24 − 1
12k

4∑
a=1

1
∆a

+
1 − 1

4
∑

a
∆2

a

3k(b+ b−1)2
∏4

a=1 ∆a

,

and

∆1 = 1
2 − i m1 +m2 +m3

b+ b−1 , ∆2 = 1
2 − i m1 −m2 −m3

b+ b−1 ,

∆3 = 1
2 + i m1 +m2 −m3

b+ b−1 , ∆4 = 1
2 + i m1 −m2 +m3

b+ b−1 ,

such that
∑

a
∆a = 2.
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Adding sources
This result encodes integrated correlation functions of the ABJM theory on R3.

Expand at large N and use holography to constrain/compute the
higher-derivative corrections to type II string theory and M-theory.[Chester-Pufu-Yin],

[Binder-Chester-Pufu], ...

Example:
Squashed S3 partition function

FS3
b

= π
√

2k
12

[
(b+ b−1)

[
N

3
2 +

( 1
k

− k

16

)
N

1
2

]
− 6
k
N

1
2

]
+ 1

4 logN+O(N0) .

This captures integrated correlators of Tµν for the ABJM theory in flat space!

CT = 32
π2

(
∂2FS3

b

∂b2

)
b=1

= 64
√

2k
3π N

3
2 + 4(16 − k2)

√
2

3π
√
k

N
1
2 + O(N0) .

where

⟨TµνTρσ⟩ = CT

(48π)2 (PµρPνσ + PνρPµσ − PµνPρσ) 1
x⃗2 , Pµν ≡ δµν∂

2−∂µ∂ν .
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What about the ABJM partition function on other
3-manifolds?



The ABJM topologically twisted index



TTI
The topologically twisted index (TTI) is a partition function of a 3d N = 2
SCFT on S1 × Σg. Supersymmetry is preserved by Witten’s topological twist
on Σg. The 3d QFT is not topological. Using supersymmetric localization the
path integral can be reduced to a matrix integral.[Benini-Zaffaroni], [Closset-Kim]

For the ABJM theory the result is

Z
S1×Σg

(N, k, ∆, n) =
1

(N !)2

∑
m,m̃∈ZN

∮
C

N∏
i=1

dxi

2πixi

N∏
j=1

dx̃j

2πix̃j

N∏
i=1

x
kmi
i

N∏
j=1

x̃
−km̃j
j

× (det B(N, k, x, x̃, ∆))g ×

N∏
i̸=j

(
1 −

xi

xj

)1−g(
1 −

x̃i

x̃j

)1−g

×

N∏
i,j=1

∏
a=1,2

(√
xi
x̃j

ya

1 − xi
x̃j

ya

)mi−m̃j +1−g−na ∏
a=3,4


√

x̃j
xi

ya

1 −
x̃j
xi

ya

−mi+m̃j +1−g−na

.

Here ya = eiπ∆a and supersymmetry imposes

4∑
a=1

∆a = 2 ,
4∑

a=1

na = 2(1 − g) .
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TTI

Using (subtle) contour integration the TTI can be rewritten as

Z =

4∏
a=1

y
− N2

2 na
a

∑
{xi,x̃j }

[
1

det B

∏N

i=1
xN

i x̃N
i

∏N

i̸=j
(1 − xi

xj
)(1 − x̃i

x̃j
)∏N

i,j=1

∏2
a=1

(x̃j − xiya)
1− na

1−g
∏4

a=3
(xi − x̃j ya)

1− na
1−g

]1−g

.

Where xi and x̃i are solutions to the following “Bethe Ansatz Equations”

eiBi ≡ xk
i

N∏
j=1

(1 − y3
x̃j

xi
)(1 − y4

x̃j

xi
)

(1 − y−1
1

x̃j

xi
)(1 − y−1

2
x̃j

xi
)

= 1 ,

eiB̃j ≡ x̃k
j

N∏
i=1

(1 − y3
x̃j

xi
)(1 − y4

x̃j

xi
)

(1 − y−1
1

x̃j

xi
)(1 − y−1

2
x̃j

xi
)

= 1 ,

and the Jacobian matrix B is given by

B = ∂(eiB1 , · · · , eiBN , eiB̃1 , · · · , eiB̃N )
∂(log x1, · · · , log xN , log x̃1, · · · , log x̃N ) .



TTI at large N
The BAE solution in the large N limit takes the form [Benini-Hristov-Zaffaroni]

log xi = N
1
2 ti − ivi , log x̃j = N

1
2 tj − iṽj .

Our approach: Use this solution as a starting point to numerically solve the
BAE and calculate the index. The numerical results are very precise and led us
to an analytic form for the TTI valid to all orders in 1/N !

To write the result compactly define

N̂∆ ≡ N − k

24 + 1
12k

4∑
a=1

1
∆a

,

in terms of which FS1×Σg
= − logZS1×Σg

, takes the simple form:

FS1×Σg
= π

√
2k∆1∆2∆3∆4

3

4∑
a=1

na

∆a

(
N̂

3
2

∆ − ca

k
N̂

1
2

∆

)
+ 1 − g

2 log N̂∆ − f̂0(k,∆, n) ,

where ca are given by

ca =
∏

b̸=a
(∆a + ∆b)

8∆1∆2∆3∆4

∑
b̸=a

∆b .
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The universal index
The universal index is defined by setting ∆a = 1

2 and na = 1−g
2 . We then

define N̂ = N − k
24 + 2

3k
to obtain

FS1×Σg

1 − g
= π

√
2k

3

(
N̂

3
2 − 3

k
N̂

1
2

)
+ 1

2 log N̂ − f̂0(k) .

No closed form expression for f̂0(k) but at large k we find

f̂0(k) = −3ζ(3)
8π2 k2 + 7

6 log k + f0 +
5∑

n=1

(2π
k

)2n f2n

3n+2 + O(k−12) ,

with {f2n} =
{

− 6
5 ,

19
70 , − 41

175 ,
279
700 , − 964636

875875

}
and f0 = −2.096848299 .

For low values of k, f̂0(k) can be determined numerically with very good
precision:

f̂0(1) = −3.045951311 , f̂0(2) = −1.786597534 ,

f̂0(3) = −1.386373044 , f̂0(4) = −1.306589553 .

We have checked these results with extensive numerical calculations to great
accuracy. They are exact up to e−

√
N corrections.
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The universal index

This result can be reorganized as a type IIA string theory expansion

FS1×Σg
= −

∑
g≥0

(2πiλ)2g−2Fg(λ)N2−2g .

For low genera we find

F0(λ)
1 − g

= 4π3√
2

3 λ̂
3
2 + 3ζ(3)

2 ,

F1(λ)
1 − g

= 2π
√

2
3 λ̂

1
2 − 1

2 log λ̂− 2
3 log λ+ f0 ,

F2(λ)
1 − g

= λ̂−1

12π2 − 5λ̂− 1
2

36
√

2π
+ 2

45 ,

F3(λ)
1 − g

= λ̂−2

144π4 − λ̂− 3
2

162
√

2π3
+ 19

5670 .

where λ̂ = λ− 1
24 .

How can we derive this from type IIA string theory?
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Holography and black holes



The universal black hole
The following is a supersymmetric Euclidean solution of 4d N = 2 gauged
supergravity [Romans], [Benetti Genolini-Ipiña-Sparks], [NPB-Charles-Min], ...

ds2
4 = U(r)dτ2 + dr2

U(r) + r2ds2
Σg
, F = Q

r2 dτ ∧ dr − κ

g
vol(Σg) ,

U(r) =
(√

2gr + κ

2
√

2gr

)2

− Q2

8r2 , κ = 1, 0,−1.

The solution is smooth for g|Q| > κ. The periodicity of τ is

βτ =
π
√

−κ+ g|Q|
g2|Q| .

The smooth Lorentzian black hole is obtained by taking Q → 0 and exists only
for κ = −1, i.e. g > 1. The regularized on-shell action for any βτ is

I = − π

4g2GN
(g − 1) .

For the black hole solution this leads to SBH = −I.[Gibbons-Hawking],...

This is the extremal magnetic Reissner-Nordström black hole in AdS4!
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The universal black hole
An 11d uplift of this solution is given by

ds2
11 = 1

4ds
2
4 + ds2

CP3 +
(
dψ + σCP3 + 1

4A
)2
,

G4 = 3
8 vol4 − 1

4 ⋆4 F ∧ JCP3 , with dσCP3 = 2JCP3 .

Our QFT result for the TTI amounts to a prediction for the path integral of
M-theory on this background to all orders in the 1/N expansion.

FS1×Σg
= (1 − g)π

√
2k

3

(
N

3
2 − 32 + k2

16k N
1
2

)
+ (1 − g)

2 logN + . . . .

The N 3
2 term comes from the 2-der on-shell action.[Benini-Hristov-Zaffaroni],

[Azzurli-NPB-Crichigno-Min-Zaffaroni]

The N 1
2 term comes from the 4-der supergravity on-shell action.

[NPB-Charles-Hristov-Reys]

The logN term comes from 1-loop contributions of the 11d KK modes.
[Liu-Pando Zayas-Rathee-Zhao]

An all-order prediction for the entropy of this black hole?!?
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General “black saddles”
There are more general supersymmetric Euclidean “black saddle” solutions in
the STU model of 4d N = 2 supergravity (gravity + 3 vector multiplets)

ds2
4 = e2f1(r)dτ2 + e2f2(r)dr2 + e2f3(r)ds2

Σg
, AI = vI(r)dτ + pIωΣg

zα(r) , z̃α(r) , α = 1, 2, 3 and I = 0, 1, 2, 3 .

The on-shell action of these solutions agrees with the N 3
2 term in the TTI for

general fugacities ∆a and magnetic fluxes na. [NPB-Charles-Min]

FS1×Σg
≈ π

√
2k∆1∆2∆3∆4

3

4∑
a=1

na

∆a
N

3
2 .

The exact TTI is a prediction for the string/M-theory path integral on these
backgrounds!

Some of these Euclidean solutions admit Lorentzian interpretation as
supersymmetric black holes with an AdS2 × Σg near horizon
limit.[Gauntlett-Kim-Pakis-Waldram], [Cacciatori-Klemm], [NPB-Min-Pilch], [NPB-Charles-Min]

The entropy of these black holes is computed by the TTI after a Legendre
transform and I-extremization.[Benini-Hristov-Zaffaroni], [NPB-Min-Pilch], ...
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Other 3d N = 2 SCFTs



3d N = 4 SYM
There is another simple 3d N = 4 holographic SCFT we can study with these
tools - 3d N = 4 SYM with U(N) gauge theory with 1 adjoint and Nf

fundamental hypermultiplets and no CS term.

The bulk dual is an AdS4 × S7/ZNf solution of 11d supergravity. The orbifold
acts on C4 as

(z1, z2, z3, z4) → (z1, z2, e
2πi/Nf z3, e

2πi/Nf z4) .

We can apply the same numerical method to compute the TTI to find

FS1×Σg

1 − g
= π

√
2

3 N
1
2

f

[
N̂

3
2 −

(
Nf

2 + 5
2Nf

)
N̂

1
2

]
+ 1

2 log N̂ − f̂0(Nf ) ,

where
N̂ = N + 7Nf

24 + 1
3Nf

.

There is a corresponding BPS black hole in M-theory for which this index
computes the entropy.



3d N = 4 SYM
There is another simple 3d N = 4 holographic SCFT we can study with these
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Other examples
Similar results can be obtained for other 3d holographic SCFTs (no known Airy
function on S3 for most of these!)

3d N = 2 mABJM theory. We have N̂ = N + 19
24

FS1×Σg

1 − g
= 4π

√
2

9
√

3

[
N̂

3
2 − 9

2 N̂
1
2

]
+ 1

2 log N̂ − f̂0 ,

3d N = 2 V 5,2 theory. We have N̂ = N + k
6 + 1

4k
and

FS1×Σg

1 − g
= 16π

√
k

27

[
N̂

3
2 −

(9k
16 + 27

16k

)
N̂

1
2

]
+ 1

2 log N̂ − f̂0(k) ,

3d N = 2 Q111 theory. We have N̂ = N + k
6 and

FS1×Σg

1 − g
= 4π

√
k

3
√

3

[
N̂

3
2 −

(
k

4 + 3
4k

)
N̂

1
2

]
+ 1

2 log N̂ − f̂0(k) ,

3d N = 3 N010 theory. We have N̂ = N + k
12 + 1

3k
and

FS1×Σg

1 − g
= 4π

√
k

3
√

3

[
N̂

3
2 −

(
k

4 + 5
4k

)
N̂

1
2

]
+ 1

2 log N̂ − f̂0(k) ,

In each of these cases there is a BPS black hole solution for which the index
accounts for the entropy.



The superconformal index [with Sunjin Choi]

The superconformal index (SCI), or S1 ×w S
2 partition function, counts certain

BPS operators in 3d N = 2 SCFTs.

It is useful to consider the Cardy-like limit ω → 0. The SCI can then be
analyzed with similar tools as the TTI.

For the ABJM theory in the M-theory limit we find the following ω−1 and ω0

results

log IABJM(N, k, ω)

= −π
√

2k
3

[( 1
2ω + 1

)(
N − k

24 + 2
3k

) 3
2

− 3
k

(
N − k

24 + 2
3k

) 1
2

]
− 2
ω
ĝ0(k) − 1

2 log
(
N − k

24 + 2
3k

)
+ f̂0(k) + O(e−

√
N ) + O(ω) .

Captures the entropy of the dual supersymmetric AdS4 Kerr-Newman black
hole.

Similar results for other 3d N = 2 holographic SCFTs.
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Thermal observables [to appear]

Consider a 3d CFT on S1
β × R2 where β = 1/T . The 1pt function of the

energy-momentum tensor and the thermal free energy are

⟨T 00⟩ = 2
3
bT

β3 , FS1
β

×R2 = fT

β3 , 3fT = bT .

Q: How do we compute these thermal observables in holographic CFTs?

A: Employ the “unreasonable effectiveness of higher-derivative supergravity in
holography”! [NPB-Charles-Hristov-Reys]

Basic idea: Use the susy localization results above to fix the four-derivative
gauged supergravity action. Then use this action in conjunction with
holography to compute thermal observables.

For the ABJM theory we find

bT = −8π2√
2k

27 N3/2 + π2(k2 − 16)
27

√
2k

N1/2 + . . . .

Somewhat surprisingly we find that to this order at large N bT = − π3

72CT !

Similar results for other 3d N = 2 holographic SCFTs.
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Summary

Presented exact results for the large N limit of the partition function of
the ABJM theory on S3, S1 × Σg, and S1 ×ω S

2.

Discussed how some of these results can be reproduced by
string/M-theory via AdS/CFT.

All order microscopic prediction for the entropy of the BPS AdS4
Reissner-Nordström and Kerr-Newman black holes.

Generalization of these results to some other 3d N = 2, N = 3, and
N = 4 holographic SCFTs.

Applications of these results to the calculation of thermal observables.



Outlook

Extend to other 3d N = 2 holographic SCFTs.[in progress]

Analytic derivation of our results.

Partition functions on other compact 3-manifolds.

Understand the shift in N from M-theory.[Bergman-Hirano], [in progress]

Implications for the higher-derivative corrections to 4d and 11d
supergravity?

Supersymmetric localization in 4d supergravity?

Derivation from (or lessons for) type IIA string theory and M-theory?

OSV-type conjecture for AdS black holes?




