Perspectives in Experimental High Energy Physics a tribute to C. Bouchiat

It is difficult to make predictions, especially about the future (Mark Twain)

M. Spiro President IUPAP

In other words: at what E scale(s) are the answers to these questions?

High energy frontier

Complete the LHC and HL-LHC program \rightarrow 2040 Decide on a e+ e- Higgs factory in 2025 to operate it it on 2045 Target multi 10 TeV physics with a 100 TeV hadron collider or a muon collider to operate in 2070

HL-LHC: THE NEAR FUTURE

5

Higgs Boson decay at HL-LHC

Higgs potential at HL-LHC

European strategy for particle physics 2020

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update (2027).

e⁺e⁻ Higgs Factories

Linear:

Circular:

FUTURE HADRON COLLIDERS

- Approach of reusing a tunnel for more than one machine
 - ► ex. FCC Integrated Program
- Need time to develop the 16T magnets needed for the high energy
- Possible Heavy-Ion runs with very interesting physics program

FCC-hh FCC

NUMEROLOGY FOR FCC-hh, 10ab⁻¹, √s=100 TeV

► 10¹⁰ Higgs bosons => 10⁴x today

Total lumi in studies can be 20ab⁻¹ or 30ab⁻¹

→precision measurements
→rare decays
→FCNC probes: H->eµ

➤ 10¹² top quarks => 5 10⁴ x today

- ► =>10¹² W bosons from top decays
- \blacktriangleright =>10¹² b hadrons from top decays

$$\blacktriangleright$$
 =>10¹¹ $t \rightarrow W \rightarrow \tau$

► few $10^{11}t \rightarrow W \rightarrow charm \ hadrons$

 ⇒precision measurements
⇒rare decays
⇒FCNC probes: t->cV (V=Z,g,γ), t->cH
⇒CP violation
⇒BSM decays ???

⇒rare decays τ->3μ, μγ, CPV

⇒rare decays D->µ+µ-,... CPV

Amazing potential, extreme detector and reconstruction challenges

MUON COLLIDER

Schematic layouts of Muon Collider complexes based on the proton driver scheme and on the low emittance positron driver scheme emphasizing syn sketched below.

Many small or medium size precision experiments to test the Standard model

US: One goal: study Charged Lepton Flavor Violation in all three muon modes: μ -N \rightarrow e-N; $\mu \rightarrow e\gamma$; and $\mu \rightarrow 3e$

g-2 B decays

Anti hydrogen atoms

Electric dipole moment, n e

Parity violation and Tests of the SM with ultra cold atoms in the spirit of Bouchiat Bouchiat parity violation experiments.. Beyond the standard model and beyond general relativity evidences might be found first there.

Neutrinos Physics

Large (>10kt) neutrino detectors ICECUBE IceCube Super-Kamiokande, SK-Gd **NOvA** JUNO DUNE Cathode Hyper-Kamiokande V # KM3Net 2 Prospect of physics with large neutrino detectors M.Yokoyama (U. Tokyo)

- Different baselines different effects from matter effect (and possibly others not dependent on L/E)
 - ST2K has a shorter baseline, purer effect of CPV
 - SNOvA has a longer baseline, more matter effect and sensitivity to the mass ordering
- S Different detector technology, different systematics

Next generation long baseline experiments

Hyper-Kamiokande in Japan

Sector 295km baseline

- ~0.6GeV off-axis neutrino beam
 - 5 1.3MW beam power
- S 190kton water Cherenkov detector
- Suppraded/new near detectors

- 1300km baseline
- S 0.5-4GeV wide-band beam
 - 5 1.2MW, upgradable to 2.4MW
- \$ >40kton(4×10) liquid argon TPCs
- Solution State State
- Sector Start "Phase I" with 2 far detectors, 1.2MW beam, and a limited near detector

arXiv:2203.06100 DUNE Physics Summary (Snowmass white paper)

Different baseline, energy, technology, systematics → complementary Both have rich non-beam physics programs

Prospect of physics with large neutrino detectors

M.Yokoyama (U. Tokyo)

O neutrino double beta decay

THE DOUBLE BETA DECAY

- Predicted by Maria-Goeppert Mayer in 1935
- > The SM decay, with 2 neutrinos, was observed in 14 nuclei
- ► T_{1/2} > 10¹⁸ y: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

INTRODUCTION: NEUTRINOS

THE NEUTRINOLESS DOUBLE BETA DECAY

- Can only occur if neutrinos have mass and if they are their own anti-particles; ΔL = 2
- Expected signature: sharp peak at the Q-value of the decay

4

OBSERVABLE DECAY RATE

With the effective Majorana neutrino mass:

 $|\langle m_{\beta\beta} \rangle| = |U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i(\alpha_1 - \alpha_2)} + U_{e3}^2 m_3 e^{i(-\alpha_1 - 2\delta)}|$

- > a coherent sum over mass ES, with potentially CP violating phases
- a mixture of m₁, m₂, m₃, proportional to U²

High Energy Physics without accelerators

LEADING RESULTS: OVERVIEW

Experiment	lsotope	FWHM [keV]	T _{1/2} [10 ²⁶ y]	m _{ββ} [meV]
CUORE	¹³⁰ Te	7.4	0.15	162-757
CUPID-0	⁸² Se	23	0.024	394-810
EXO-200	¹³⁶ Xe	71	0.18	93-287
KamLAND-Zen	¹³⁶ Xe	270	1.1	76-234
GERDA	⁷⁶ Ge	3.3	0.9	104-228
Majorana	⁷⁶ Ge	2.5	0.27	157-346

GERDA collaboration, Science 365, Sept 2019

FUTURE PROJECTS: A SELECTION

Experiment	lsotope	lso mass [kg]	FWHM [keV]	T _{1/2} [10 ²⁷ y]	$m_{\beta\beta}$ [meV]
CUPID	¹³⁰ Te	543	5	2.1	13-31
CUPID	⁸² Se	336	5	2.6	8-38
nEXO	¹³⁶ Xe	4500	59	6	7-21
KamLAND2-Zen	¹³⁶ Xe	1000	141	1.4	14-44
DARWIN	¹³⁶ Xe	1068	20	1.4	14-44
PandaX-III	¹³⁶ Xe	901	24	1.3	14-46
LEGEND-200	⁷⁶ Ge	175	3	1	34-74
LEGEND-1t	⁷⁶ Ge	873	3	6	14-30
SuperNEMO	⁸² Se	100	120	0.1	58-144

MASS OBSERVABLES

- Constraints in the $m_{\beta\beta}$ parameters space in the 3 light v scenario
- GERDA + leading experiments in the field

SUMMARY

- > Ton-scale experiments are required to probe the IH scenario
- Several technologies move into this direction
- Much larger experiments required to probe the NH scenario

DARK MATTER SEARCH

- Through the high energy frontier (production at high energy accelerators)
- Direct detection of dark matter around us
- Indirect detection of dark matter annihilation in the center of the earth, of the sun, of our galaxy where it should accumulate
- Other various methods (axion, sterile neutrinos...)

Exciting Future for Direct Detection

very diverse experimental landscape – many different projects

aim at closing most interesting parameter space in the next decade(s)

INDIRECT DETECTION: annihilation in the center of the earth or sun

Outlook of gamma-ray observations

Charged particles, radio and neutrinos

bb

u[†]u

95% C.L.

 $\frac{10^2}{\text{WIMP mass }M_{\chi} [\text{GeV}]} \frac{10^3}{10^3}$

10-28

10-29

10

Large Magellanic Cloud in radio

Evidence for Dark Matter or not from positron Cosmic Ray Spectrum in AMS

Samuel Ting vs Sylvie Rosier

Figure 1. For display purposes, the positron flux, Φ_{e^+} is traditionally presented scaled by \tilde{E}^3 . The resulting AMS positron spectrum, $\tilde{E}^3 \Phi_{e^+}$, (red data points) is shown as a function of energy. \tilde{E} is the spectrally weighted mean energy for a flux proportional to E^{-3} . The time variation of the flux at low energies due to solar modulation is indicated by the red band. To guide the eye, the vertical color bands indicate the energy ranges corresponding to changing behavior of the spectrum: flattening, rising, and falling spectrum.

Sylvie Rosier-Lees 1961–2022 – ...

Consulter

VIRGO: Project initiated in France by A. Brillet, accepted after the P. Fleury review panel examination (1990)

S. K. Katsanevas EGO Director 2018 - 2022

Gravitational Waves « Frequency Domain » Analysis

Discovering (direct or indirect) the stochastic GW background from inflation would be a major discovery

Black holes as dark matter?

- Most events seen by LIGO/VIRGO are coalescence of few tens of solar masses black holes (excellent laboratory to test General Relativity)! Could these black holes be the dark matter in the universe?
- Very recently the EROS collaboration, combining its data with MACHO, has shown that the dark matter in the halo of our galaxy cannot be made of compact objects of masses between 10⁻⁶ and 10³ solar masses
- This is based on observations of millions of stars in the LMC, looking (during 10 years) at the occurrence of alignments between us, a dark compact object in the halo of our galaxy and a star in the LMC.
 - Thèse 2021: Tristan Blaineau, directeur de thèse: Marc Moniez

A multi approach to the future of experimental particle physics

- The high energy frontier
- Precision low energy experiments: the precision frontier
- Neutrino physics: the neutrino frontier
- Dark matter, gravitational waves, high energy astrophysics: the cosmic frontier
- A rich landscape. I very much hope it is affordable.