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Outline

• Parity and its non-conservation in b-decay

• Neutral weak currents and their implication in stable atoms

• Experiments on parity violation in atomic physics
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Parity in quantum mechanics

• Wavefunction of a system Y(X, Y, Z) (particle or particles)  either even 
or odd under a parity operation

• PY(X, Y, Z) = Y(-X,-Y,-Z) = ( 1) Y(X, Y, Z) = PY(X, Y, Z) 

• P = +1  even parity, 

• P = -1   odd parity

• Parity is conserved if two experiments in configurations of opposite 
parity yield the same result.
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Parity in quantum mechanics
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1956
An auspicious year for parity non conservation
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Two young French physicists meet at the Les Houches summer school
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• T.D. Lee and C.N. “Frank” Yang speculated parity might not be conserved

 in weak interactions ( -  puzzle)

• Suggested b-decay of aligned nuclei as one possible test 

T.D. Lee and C.N. Yang Phys. Rev. 104, 254-258 (1956) and erratum 106, 1371  (1957)
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Radioactive decay of 60Co

60 Co → 60Ni* + b → 60Ni + g
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Nuclear orientation
• Cobalt-60 nuclei have a non-zero spin I and magnetic moment µ

• They will tend to align themselves parallel to an external magnetic 
field, especially at cryogenic temperatures
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b-decay of 60Co
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Electrons emitted preferentially
in the opposite direction to the nuclear spin

b-

1957 Historic experiment performed at NBS

C.S. Wu et al.  Phys. Rev.  105 1413-1415 (1957)



Mirror image b-decay of 60Co never observed

Spin (angular momentum, an axial vector) stays pointing upwards
but the direction of the electron (a vector) is reversed.

Parity is not conserved
in b-decay


e-

13



Parity non-conservation weak interaction

• Gravitational, strong, electromagnetic interactions : Parity always conserved

• Weak interaction:  Parity sometimes not conserved

• Corrolary : use the observation of parity violation to isolate the effect of the 
weak interaction.
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b decay is mediated by a charged weak current

W-
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Electroweak unification and weak neutral currents (1961-1972)

• Jamais deux sans trois

Not only massive charged bosons

    W+ , W- 

but also a massive neutral boson

     Z0

MZ  100 mp , hence the name heavy light 
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1972 Marie-Anne and Claude Bouchiat quantify how Z0 would 
modify the optical properties of atoms.
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Weak neutral current in an atom with a stable nucleus

Z0

N N
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18



In a stable atom neutral weak currents Z0

compete with photon exchange between electrons and nucleus

Z0

N N
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First observation of neutral weak currents Z0

(Gargamelle bubble chamber, CERN)

• Muon neutrino scattered from electrons and (quarks within) nuclei.

Z0

N N

nµ
nµ

Z0

e e

nµ
nµ
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Free parameter of electroweak theory: weak mixing angle W 

• cos W= mW/mZ

• sin 2W = 0.23

 

 (1 - 4sin2 W) = 0.08 << 1

W  28°

mW

mZ
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The Bouchiats’  Z3 law

• Weak interaction mixes S- and P-states which are of opposite parity

• Mixing amplitude product of three factors

• Amplitude of the s-electron wavefunction at the origin S(0)  Z1/2

• Gradient of the p-electron wavefunction at the origin dP(0)/dr  Z3/2

• Nuclear weak charge Qw = -N + (1-4sin2W)Z  -N

•E1
PV = C KrZ

2Qw  Z3

• Study optical transitions in heavy atoms

• H, D  notable exceptions – theory attractive, experiments so far too hard

-QW versus Z
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M.A. Bouchiat and C. Bouchiat Journal de Physique 35 899-927 (1974)  and  36 493-500 (1975) 

Kr relativistic enhancement factor
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Weak neutral currents modify atomic transitions rates

• Allow very slightly otherwise forbidden transitions

 

• Transition rate |AW|2 < 10-22 |AEM|2 

• Unobservably small 

    cf. size of signals in LIGO/Virgo gravity wave detection
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How do you isolate the PV effect?

• Bouchiat and Bouchiat suggested using interference between EM

 and electroweak-induced  transition amplitudes.   

|AEM + AW|2 = AEM
2+ AW

2 + 2 Re(AEMAW*)

• Measure ratio   2Re(AEMAW *) / AEM
2  = 2ReAW*/AEM

• Electric dipole (E1) transition |AW/AEM |  10-11
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How can you increase the PV asymmetry?

• By studying transitions where AEM is small

•  Allowed magnetic dipole (M1) transitions Tl (Z=81), Pb (Z=82), Bi (Z=83) : 

|Re AW/AEM | 10-7

•     Or even smaller still 

• Forbidden magnetic dipole transitions  Cs (Z=55), Tl : 

|(Re AW)/AEM| > 10-4 

but much lower signal  |AEM|2
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How do you extract Qw from measurements?

• Atomic structure calculations of E1
PV/Qw and vector polarisability b.

• Easiest for alkali atoms e.g. Cs (6s) but still extremely hard.

 (now at the sub-1% level)

•  More challenging for Tl ([6s2] 6p), 

•  Even tougher for Pb ([6s2] 6p2) and tougher still for Bi([6s2] 6p3) 

• Ab initio or semi-empirical C. Bouchiat and C.A. Piketty  
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PV experiments worldwide

• Paris PV experiment started in 1973

• Following B&B 1974-75 papers other optical PV experiments began in

   Zurich, Novosibirsk, Oxford, Berkeley, Seattle, Moscow

Two types 

• Optical rotation

• Stark interference 
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Optical rotation experiments: the simplest approach

• Allowed M1 transition (Tl, Pb, Bi, Sm):  circular birefringence – optical activity of an atomic vapour 10-7 
rad/ absorption length (Oxford, Moscow,  Novosibirsk, Seattle)

• D.N. Stacey « It is better to measure 10-7 of something than 10-4 of nothing »

• Are your sure to recognize that something?

• Challenge of systematic effects, conflicting results of early experiments late 1970s

• To isolate PV effect, 

  (i) compare rotation with/without atomic vapour. 
(ii) scan laser frequency and exploit lineshape, 

e
e’

Oven with vapour and buffer gas placed between 
crossed polariser and analyser

1 m
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Optical rotation on the 876 nm line in bismuth

Oxford groupM.J.D. MacPherson et al. Phys. Rev. Lett. 67, 2784-2787 (1991)

• Uncertainty 1-3% by the 1990s in Tl, Pb and Bi
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Stark interference experiment : harder but ultimately more reliable

• Forbidden magnetic dipole transition (Cs 6s-7s, Tl 6p-7p)

 Asymmetry ~5×10-4 but no signal! (1 absorption length = 1 million km)

• Clever trick : apply an electric field to make the transition slightly allowed

• Look for the interference AWAStark. 

• AW/AStark ~ 10-5 to 10-6 but…

• The effect changes sign under the reversal

    E →    –E. 

 Very powerful discriminant against systematic effects.
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 of the
fluoresence
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1.36 µm

First Cs parity violation experiment (Paris 1973-1983) 
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Experimental geometry

Reverse E


’

Modulate polarisation

Analyse polarisation

• Circular dichroism and Stark interference
• Multi-pass cell (100 fold)
• Increase PV signal
• Suppress systematic effect M1k

+k

-k



Lionel PottierMarie-Anne Bouchiat



Jocelyne Guéna Larry Hunter



• By the early 1980s, after having reduced all imaginable systematic effects 
to an acceptable level, the Paris group was at last ready to measure PV.

• In the sub-basement of the ENS physics department, Marie-Anne 
Bouchiat, Lionel Pottier, Jocelyne Guéna and Larry Hunter took data 24/7 
for 6 weeks, once in 1982 and again in 1983.

• Two different hyperfine components of the transition (4-4 and 4-3) 
studied as systematic effects very different

• Uncertainty 20% per transition

•  12% for the weighted average.
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Im Epv
1/β = - 1.52 ± 0.18 mV/cm.

M.A. Bouchiat et al. J. Physique  46, 1897-1924 (1985),  47, 1175-1202 and 1709-1730 (1986) 



Scattering of high-energy (19.4 GeV), longitudinally polarised electrons scattering from 
deuterium (Stanford Linear Accelerator) 
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D
s

e-

C.Y. Prescott et al. Physics Letters 77B,  347-352 (1978)

• 10-4 left-right scattering asymmetry when electron helicity s reversed

• First evidence of neutral weak currents in electron-nucleus system
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Complementarity of  low- and high-energy experiments



4th May 1983 Discovery of 
first Z boson at CERN

• Proton-anti-proton collider

• Observe decay products of short-lived 
massive bosons.

• See Peter M. Watkins,  « Story of the W 
and Z »(Cambridge 1986).
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Why pursue PV experiments?

• At uncertainties below 10%, test radiative corrections to the 
Weinberg-Salam model in the low-energy limit.

• Set limits on the mass of extra neutral Z bosons.

• At the few percent level of uncertainty, look for nuclear spin-
dependent effects (nuclear anapole moment)
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Nuclear anapole moment

• Effect of the weak interaction within the nucleus – chiral magnetism

• EM interaction = photon exchange between the electron and the 
nucleus modifies the EM absorption properties of the atom 

• Effect  Z2  = (Z 1/2 × Z 3/2 ) depends on nuclear spin

• About 2% of that due to Qw in experiments on Cs :

• Difference between PV  asymmetries for different hyperfine 
components of an optical transition

• Suggestion to observe it by NMR of a Cs atom trapped in a single 
crystal of helium – uniaxial hexagonally close packed phase.

 M.A. Bouchiat and C. Bouchiat Eur. Phys. J. D 15, 5-18 (2001)  

I
Ia B. Zel’dovich J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1531-1533 (December, 1957)

7S

6S

F’=4

F=4

F=3

F’=3

Parity violating nuclear 
spin magnetization



Michigan/Boulder cæsium PV experiments (1980-1997)

• Circular dichroism experiment using crossed E and B fields 

(Principle M.A. Bouchiat, M. Poirier and C. Bouchiat J. Physique 40, 1127-1138 (1979) 

used in Berkeley expts on thallium  6P-7P)

• 3 reversals (circular polarisation, E and B)

• Atomic beam  clean environment, easy to modify, lower B field (6.4 G) cf. cell (1 kG)

• High S/N thanks to huge intra-cavity  laser power (2.5 kW),  detection efficiency

• PV signal is a tiny difference of large signals (6S -6P fluorescence at 852 nm) – bright field 
detection

 1986 8%, 1988 2.5 %

• Later version used optically-pumped beam to populate different magnetic sub-levels → 2 
more reversals  

41

Carl Wieman and colleagues



Preparation

Interaction: 2.5 kW green light

Detection

Taken from C.S. Wood et al. Science 275, 1759-1763  (1997)
Detailed description in  C.S. Wood et al. Can. J. Phys. 77, 7-75 (1999) 42



Results of Boulder Cs PNC experiments

1986  8 %

1988  2,5 %

1997 experiment with optically pumped beam

High intra-cavity laser power leads to 6S-7S lineshape distorsion:

Systematic shift on F=4 - F’=3 (2% per data block) averaged down to a negligible level

For F=3 - F’=4 and F=4 - F’=3  0.5 % per component

Weighted average   0.35%

Current difference w.r.t. Qw Standard Model -0.3 s to + 1.2 s (Toh et al. PRL 123 073002 (2019))

  

Nuclear anapole moment 

Ratio of PV HF amplitudes -1 : (4.90.7) 10-2 versus (1.60.3) 10-3 theory 

 Marie-Anne Bouchiat  Il Nuovo Cimento 35C, N. 4, 78-84 (2012)
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And now for something completely different - but step by step. 

Second Paris Cs PV experiment (1984-2004)

PhD students 
• Michel Lintz (later permanent member)
• Dominique Chauvat (RIP)
• Erwan Jahier 
• Stefano Sanguinetti

Postdocs and visitors
• Emlyn Hughes
• Sven Redsun
• M.P.
• Sergei Kanorsky
• Aram Papoyan
• David Sarkisyan
• Ajay Wasan
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Philippe Jacquier (RIP)

Thèse de doctorat d’Etat ENS 1991



Second Paris Cs PV experiment: principle

• Excite 6S-7S transition in a vapour using linearly polarised laser pulses in a 
longitudinal E-field (16 kV/8 cm)

• Probe the 7S state using stimulated emission of a linearly-polarised probe beam 
exciting the 7S-6P3/2 transition at 1.47 µm

• Linear dichroism causes rotation of the plane of polarisation (1 µrad) that 
reverses when the E-field is switched

• Balanced polarimeter for dark-field detection

• Totally different systematic effects cf. previous expts.

• 7 reversals or differences to isolate PV effect
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Experiment designed to achieve accuracy ~1% per hyperfine component and suited to 3-3’, 3-4’, 4-3’ and 4-4’ 

Pulsed excitation

Detection by
stimulated emission
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Probe



48

Cell used in the development of the experiment



Claude Bouchiat and the Paris Cs PV experiments

• Modelling of the E-field distribution in the Cs cells 

• Helped quantify troublesome molecular effect

• Green laser pulses photodissociate Cs dimers 

• Cs2 +hn → Cs(6S) +Cs(5D)

• Then ionise one of the atoms 

Cs(5D)+ hn → Cs+ + e

Electrons accelerated by the longitudinal E-field ionise more molecules, creating a radial 
E-field – potential systematic!
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Cs Cs

Heat cell to 250°C to dissociate dimers



Michel Lintz
Jocelyne Guéna

(1957-2019)

Marie-Anne Bouchiat
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Statistical uncertainty limited by (available) integration time 2.6%

Cs F=3→ F’=4

Results

J. Guéna, M. Lintz, and M. A. Bouchiat Phys. Rev. A 71, 042108 (2005)



Recent experiments and ongoing projects
• Yb (Dmitry Budker et al. Berkeley/Mainz)  

• Z = 70 but PV effect = 100  PV Cs

 Studied a chain of isotopes,  demonstrated the N-dependence of QW.

D. Antypas et al. Nature Physics 15, 120-123 (2019)

• Fr Z=87 7S-8S (18  PV Cs) in a magneto-optical trap

Radioactive, longest-lived isotope 223Fr t1/2 =  23 min

G. Gwinner and L.J. Orozco Quantum Sci. Tech 7, 024001 (2022)

• Ra+ Z=88 (50  PV Cs) in a radio-frequency Paul trap 

K. Jungmann et al. PANIC11 AIP Conf. Proc. 1441, 552-554 (2012)

 

• Mirror-image molecules: DE/E < 2.5 10-13 upper limit in CHFClBr

Project Ru(acac)3, Os(acac)3   acetylacetonate

M. Fiechter et al. J. Phys. Chem. Lett. 13, 10011-10017 (2022)
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Conclusion

• Atomic PV due to Z0 exchange between electron and nucleus

• Claude and Marie-Anne Bouchiat showed the effect > Z3 and suggested

 using weak optical transitions in heavy atoms

• Table-top particle physics experiments complementary to work with 
accelerators

 – constrain values of weak charges of quarks or W

• PV experiments stimulate the development of atomic theory

• So far Qw  atomic PV experiments agree with Standard Model Qw

• More PV experiments at the <1%  uncertainty level most welcome
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Merci de votre attention !
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