The weak interaction and parity violation in atomic physics

Claude Bouchiat memorial session ENS Summer Institute Paris, July 13th 2023

Mark Plimmer

Conservatoire national des arts et métiers, Paris

1

Outline

- Parity and its non-conservation in β -decay
- Neutral weak currents and their implication in stable atoms
- Experiments on parity violation in atomic physics

Parity operation = reversal of coordinate axes

Mirror reflection

Parity in quantum mechanics

- Wavefunction of a system $\Psi(X, Y, Z)$ (particle or particles) either even or odd under a parity operation
- $\hat{P}\Psi(X, Y, Z) = \Psi(-X, -Y, -Z) = (\pm 1) \Psi(X, Y, Z) = P\Psi(X, Y, Z)$ \overline{D}
- $P = +1$ even parity,
- $P = -1$ odd parity
- Parity is conserved if two experiments in configurations of opposite parity yield the same result.

Parity in quantum mechanics

An auspicious year for parity non conservation

Two young French physicists meet at the *Les Houches* summer school

- T.D. Lee and C.N. "Frank" Yang speculated **parity might not be conserved** in weak interactions $(\theta - \tau)$ puzzle)
- Suggested β -decay of aligned nuclei as one possible test

T.D. Lee and C.N. Yang *Phys. Rev.* **104**, 254-258 (1956) and *erratum* **106**, 1371 (1957)

Radioactive decay of ⁶⁰Co

$60 \text{ Co} \rightarrow 60\text{Ni}^* + \beta \rightarrow 60\text{Ni} + \gamma$

Nuclear orientation

- Cobalt-60 nuclei have a non-zero spin I and magnetic moment μ
- They will tend to align themselves parallel to an external magnetic field, especially at cryogenic temperatures

1957 Historic experiment performed at NBS

C.S. Wu *et al. Phys. Rev.* **105** 1413-1415 (1957)

Mirror image β -decay of ⁶⁰Co never observed

Spin (angular momentum, an axial vector) stays pointing upwards but the direction of the electron (a vector) is reversed.

Parity non-conservation \leftrightarrow weak interaction

- Gravitational, strong, electromagnetic interactions : Parity always conserved
- Weak interaction: Parity sometimes **not** conserved
- **Corrolary :** use the observation of parity violation to isolate the effect of the weak interaction.

β decay is mediated by a charged weak current

Electroweak unification and weak neutral currents (1961-1972)

• *Jamais deux sans trois*

Not only massive charged bosons

 W^+ , W^-

but also a massive neutral boson

Z 0

 $M_Z \approx 100$ m_p, hence the name *heavy light*

1972 Marie-Anne and Claude Bouchiat quantify how Z⁰ would modify the optical properties of atoms.

Weak neutral current in an atom with a stable nucleus

In a stable atom neutral weak currents Z⁰ compete with photon exchange between electrons and nucleus

First observation of neutral weak currents Z⁰ (Gargamelle bubble chamber, CERN)

• Muon neutrino scattered from electrons and (quarks within) nuclei.

Free parameter of electroweak theory: weak mixing angle θ_W

•
$$
\cos \theta_W = m_W/m_Z
$$

\n• $\sin^2 \theta_W = 0.23$
\n $\sqrt{}$
\n $(1 - 4\sin^2 \theta_W) = 0.08 < 1$
\n m_W

The Bouchiats' Z³ law

- Weak interaction mixes S- and P-states which are of opposite parity
- Mixing amplitude product of three factors
- Amplitude of the s-electron wavefunction at the origin $\psi_{\rm S}(0) \varpropto Z^{1/2}$
- Gradient of the p-electron wavefunction at the origin d $\psi_P(0)$ /dr $\propto Z^{3/2}$
- **Nuclear weak charge** $Q_w = -N + (1-4\sin^2\theta_w)Z \propto -N$

$$
\bullet E_1^{\text{PV}} = C K_r Z^2 Q_w \propto Z^3
$$

 K_r relativistic enhancement factor

- **Study optical transitions in heavy atoms**
- **H, D notable exceptions – theory attractive, experiments so far too hard**

M.A. Bouchiat and C. Bouchiat *Journal de Physique* **35** 899-927 (1974) and **36** 493-500 (1975)

Weak neutral currents modify atomic transitions rates

- Allow very slightly otherwise forbidden transitions
- Transition rate \propto $|A_{\rm W}|^2$ < 10⁻²² $|A_{\rm EM}|^2$
- Unobservably small

cf. size of signals in LIGO/Virgo gravity wave detection

How do you isolate the PV effect?

• Bouchiat and Bouchiat suggested using **interference** between EM and electroweak-induced transition amplitudes.

$$
|A_{EM} + A_{W}|^{2} = A_{EM}^{2} + A_{W}^{2} + 2 \text{Re}(A_{EM}A_{W}^{*})
$$

- Measure ratio $2\text{Re}(A_{\text{EM}}A_{\text{W}}^*)/A_{\text{EM}}^2 = 2\text{Re}A_{\text{W}}^*/A_{\text{EM}}$
- Electric dipole (E1) transition $|A_{\text{M}}/A_{\text{FM}}| \approx 10^{-11}$

How can you increase the PV asymmetry?

- By studying transitions where A_{FMA} is small
- Allowed magnetic dipole (M1) transitions Tl (Z=81), Pb (Z=82), Bi (Z=83) :

 $|Re A_{\text{M}}/A_{\text{EM}}| \approx 10^{-7}$

- Or even smaller still
- Forbidden magnetic dipole transitions Cs (Z=55), Tl : $|(Re A_{W})/A_{EM}| > 10^{-4}$

but much lower signal $\propto |A_{\text{EM}}|^{2}$

How do you extract Qw from measurements?

- Atomic structure calculations of E_1^{PV}/Q_w and vector polarisability β .
- Easiest for alkali atoms e.g. Cs (6s) but still extremely hard. (now at the sub-1% level)
- More challenging for Tl ([6s²] 6p),
- Even tougher for Pb ($[6s^2] 6p^2$) and tougher still for Bi($[6s^2] 6p^3$)
- *Ab initio* or semi-empirical C. Bouchiat and C.A. Piketty

PV experiments worldwide

- Paris PV experiment started in 1973
- Following B&B 1974-75 papers other optical PV experiments began in Zurich, Novosibirsk, Oxford, Berkeley, Seattle, Moscow
- Two types
- Optical rotation
- Stark interference

Optical rotation experiments: the simplest approach

Oven with vapour and buffer gas placed between crossed polariser and analyser

- Allowed M1 transition (Tl, Pb, Bi, Sm): circular birefringence **optical activity** of an atomic vapour 10-7 rad/ absorption length (Oxford, Moscow, Novosibirsk, Seattle)
- D.N. Stacey « *It is better to measure 10-7 of something than 10-4 of nothing* »
- Are your sure to recognize that something?
- Challenge of systematic effects, conflicting results of early experiments late 1970s
- To isolate PV effect,
	- (i) compare rotation with/without atomic vapour.
	- (ii) scan laser frequency and exploit lineshape,

Optical rotation on the 876 nm line in bismuth

• Uncertainty 1-3% by the 1990s in Tl, Pb and Bi

Stark interference experiment : harder but ultimately more reliable

- Forbidden magnetic dipole transition (Cs 6s-7s, Tl 6p-7p) Asymmetry \approx 5×10⁻⁴ but no signal! (1 absorption length = 1 million km)
- Clever trick : apply an electric field to make the transition slightly allowed
- Look for the interference $A_{W}A_{strark}$.
- $A_{W}/A_{Stark} \simeq 10^{-5}$ to 10^{-6} but...
- The effect changes sign under the reversal

 $E \rightarrow -E$.

Very powerful discriminant against systematic effects.

First Cs parity violation experiment (Paris 1973-1983)

Marie Anne Bouchiat & Lionel Pottier

- By the early 1980s, after having reduced all imaginable systematic effects to an acceptable level, the Paris group was at last ready to measure PV.
- In the sub-basement of the ENS physics department, Marie-Anne Bouchiat, Lionel Pottier, Jocelyne Guéna and Larry Hunter took data 24/7 for 6 weeks, once in 1982 and again in 1983.
- Two different hyperfine components of the transition (4-4 and 4-3) studied as systematic effects very different
- Uncertainty \approx 20% per transition
- 12% **for the weighted average**.

Im $E_{pv}^{1}/β = -1.52 \pm 0.18$ mV/cm.

M.A. Bouchiat *et al. J. Physique* **46**, 1897-1924 (1985), **47**, 1175-1202 and 1709-1730 (1986)

Scattering of high-energy (19.4 GeV), longitudinally polarised electrons scattering from deuterium (Stanford Linear Accelerator)

- 10⁻⁴ left-right scattering asymmetry when electron helicity σ reversed
- First evidence of neutral weak currents in electron-nucleus system

C.Y. Prescott *et al. Physics Letters* **77B**, 347-352 (1978)

Complementarity of low- and high-energy experiments

4th May 1983 Discovery of first Z boson at CERN

- Proton-anti-proton collider
- Observe decay products of short-lived massive bosons.
- See Peter M. Watkins, « Story of the W and Z »(Cambridge 1986).

Why pursue PV experiments?

- At uncertainties below 10%, test radiative corrections to the Weinberg-Salam model in the low-energy limit.
- Set limits on the mass of extra neutral Z bosons.
- At the few percent level of uncertainty, look for nuclear spindependent effects (nuclear anapole moment)

Nuclear anapole moment

Ia B. Zel'dovich *J. Exptl. Theoret. Phys.* (U.S.S.R.) **33**, 1531-1533 (December, 1957)

- Effect of the weak interaction within the nucleus chiral magnetism
- EM interaction = photon exchange between the electron and the nucleus modifies the EM absorption properties of the atom
- Effect \propto Z² = (Z^{1/2} × Z^{3/2}) depends on nuclear spin
- About 2% of that due to Q_w in experiments on Cs :
- Difference between PV asymmetries for different hyperfine components of an optical transition
- Suggestion to observe it by NMR of a Cs atom trapped in a single crystal of helium – uniaxial hexagonally close packed phase.

M.A. Bouchiat and C. Bouchiat *Eur. Phys. J. D* **15**, 5-18 (2001)

Parity violating nuclear spin magnetization

Michigan/Boulder c**æ**sium PV experiments (1980-1997)

Carl Wieman and colleagues

- Circular dichroism experiment using crossed **E** and **B** fields (Principle M.A. Bouchiat, M. Poirier and C. Bouchiat *J. Physique* **40**, 1127-1138 (1979) used in Berkeley expts on thallium 6P-7P)
- 3 reversals (circular polarisation, E and B)
- **Atomic beam** clean environment, easy to modify, lower B field (6.4 G) cf. cell (1 kG)
- **High S/N** thanks to huge intra-cavity laser power (2.5 kW), detection efficiency
- PV signal is a tiny difference of large signals (6S -6P fluorescence **at 852 nm**) bright field detection

1986 8%, 1988 2.5 %

• Later version used optically-pumped beam to populate different magnetic sub-levels \rightarrow 2 **more reversals**

Detection

Taken from C.S. Wood et al. *Science* **275**, 1759-1763 (1997) Detailed description in C.S. Wood *et al.* Can. J. Phys. **77**, 7-75 (1999) 42

Results of Boulder Cs PNC experiments

1986 8 % 1988 2,5 %

1997 experiment with optically pumped beam High intra-cavity laser power leads to 6S-7S lineshape distorsion: Systematic shift on F=4 - F'=3 (2% per data block) averaged down to a negligible level

For F=3 - F'=4 and F=4 - F'=3 0.5 % per component Weighted average and the U.35% Current difference w.r.t. Q_w Standard Model -0.3 σ to + 1.2 σ (Toh *et al.* PRL **123** 073002 (2019))

Nuclear anapole moment

Ratio of PV HF amplitudes -1 : $(4.9 \pm 0.7) \times 10^{-2}$ *versus* $(1.6 \pm 0.3) \times 10^{-3}$ theory

Marie-Anne Bouchiat *Il Nuovo Cimento* **35C**, N. 4, 78-84 (2012)

Second Paris Cs PV experiment (1984-2004)

And now for something completely different - but step by step.

Thèse de doctorat d'Etat ENS 1991

PhD students

- Michel Lintz (later permanent member)
- Dominique Chauvat (RIP)
- Erwan Jahier
- Stefano Sanguinetti

Postdocs and visitors

- Emlyn Hughes
- Sven Redsun
- M.P.
- Sergei Kanorsky
- Aram Papoyan
- David Sarkisyan
- Ajay Wasan

Second Paris Cs PV experiment: principle

- Excite 6S-7S transition in a vapour using **linearly polarised** laser **pulses** in a **longitudinal** E-field (16 kV/8 cm)
- Probe the 7S state using **stimulated emission** of a linearly-polarised probe beam exciting the 7S-6P_{3/2} transition at 1.47 μ m
- **Linear dichroism** causes rotation of the plane of polarisation (1 µrad) that reverses when the E-field is switched
- Balanced polarimeter for **dark-field** detection
- Totally different systematic effects *cf.* previous expts.
- 7 reversals or differences to isolate PV effect

Experiment designed to achieve accuracy ~1% per hyperfine component and suited to 3-3', 3-4', 4-3' and 4-4'

Cell used in the development of the experiment

Claude Bouchiat and the Paris Cs PV experiments

- Modelling of the E-field distribution in the Cs cells
- Helped quantify troublesome molecular effect
- Green laser pulses photodissociate Cs dimers
- Cs_2 +hv \rightarrow Cs(6S) +Cs(5D)
- Then ionise one of the atoms

 $Cs(5D)$ + h $v \rightarrow Cs^{+}$ + e

Electrons accelerated by the longitudinal E-field ionise more molecules, creating a radial E-field – potential systematic!

Heat cell to 250°C to dissociate dimers

Results

Statistical uncertainty limited by (available) integration time **2.6%**

J. Guéna, M. Lintz, and M. A. Bouchiat *Phys. Rev. A* **71**, 042108 (2005)

Recent experiments and ongoing projects

- Yb (Dmitry Budker *et al.* Berkeley/Mainz)
- $7 = 70$ but PV effect = $100 \times PV$ Cs

Studied a chain of isotopes, demonstrated the N-dependence of Q_{M} . D. Antypas *et al. Nature Physics* **15**, 120-123 (2019)

- Fr Z=87 7S-8S (18 \times PV Cs) in a magneto-optical trap Radioactive, longest-lived isotope ²²³Fr t_{1/2} = 23 min G. Gwinner and L.J. Orozco *Quantum Sci. Tech* **7**, 024001 (2022)
- Ra⁺ Z=88 (50 \times PV Cs) in a radio-frequency Paul trap K. Jungmann *et al.* PANIC11 *AIP Conf. Proc.* **1441**, 552-554 (2012)

• Mirror-image molecules: $\Delta E/E < 2.5 \times 10^{-13}$ upper limit in CHFCIBr Project Ru(acac)₃, Os(acac)₃ acetylacetonate M. Fiechter et al. *J. Phys. Chem. Lett.* **13**, 10011-10017 (2022) 52

Conclusion

- Atomic PV due to Z^0 exchange between electron and nucleus
- Claude and Marie-Anne Bouchiat showed the effect $> 2³$ and suggested using weak optical transitions in heavy atoms
- Table-top particle physics experiments complementary to work with accelerators
- constrain values of weak charges of quarks or θ_{W}
- PV experiments stimulate the development of atomic theory
- So far Q_w atomic PV experiments agree with Standard Model Q_w
- More PV experiments at the <1% uncertainty level most welcome

Merci de votre attention !