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Electroweak symmetry breaking

The Mexican hat potential is designed to lead to a finite Higgs
vacuum expectation value (VEV) and break the electroweak
symmetry
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Electroweak symmetry breaking

[Weinberg '74]

At large temperatures the symmetry is restored

V(h,T) = % (h2 — '02)2 4 const x h*T? + details
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Electroweak symmetry breaking

Depending on the details, the phase transition can be very
weak or even a cross over
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Electroweak symmetry breaking

It can also be a strong phase transition if a potential barrier

seperates the new phase from
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Electroweak symmetry breaking

It can also be a strong phase transition if a potential barrier
seperates the new phase from the old phase
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Electroweak phase transition

In the SM

The effective potential is

the standard tool to study

phase transition at finite
temperature.

Lattice studies show that
there Is a crossover In
the SM.

A light Higgs would lead
to a 1st-order PT.
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Singlet extension

The Standard Model only features a
electroweak crossover.

A potential barrier and hence first-order
phase transitions are quite common in
extended scalar sectors:

V(h,s) = % (h? — %)

+m25% + \g5* + Ams2h?

The singlet field has an additional 7, symmetry and is a
viable DM candidate.

The phase transition proceeds via
(h,S) — (va) — (has) — (’U,O)
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First-order phase transitions

* first-order phase transitions proceed by
bubble nucleations

* in case of the electroweak phase
transition, the "Higgs bubble wall”
separates the symmetric from the broken
phase

* this is a violent process (v,,q;; =~ O(c¢))
that drives the plasma out-of-equilibrium
and sets the fluid into motion



Gravitational waves

During the first-order phase transitions, the
nucleated bubbles expand. Finally, the colliding
bubbles break spherical symmetry and generate
stochastic gravitational waves.



Observation

[Grojean&Servant '06]

The produced gravitational waves can be observed
with laser interferometers in space
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Observation

[Grojean&Servant '06]

... or on the ground
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Strong phase transition at larger temperatures produce
the same energy fraction of gravitational waves but at
higher frequencies.



Sources of GWs from PTs

During and after the phase transition, several sources of
GWs are active

© Collisions of the scalar field configurations / initial fluid
shells

© Sound waves after the phase transition
(long-lasting — dominant source)

© Turbulence
~ Magnetic fields

In the last 10 years, simulations became the main tool
to incorporate all these effects.



GWs from cosmological phase

transitions
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[Hindmarsh, Huber, Rummukainen, Weir '15]




Back of the envelope

There are several quantities that can enter in the
determination of the GW spectrum:

The temperature of the phase transition T.
The (inverse) duration of the phase transition

P ocexp(Bt)  and typically 3/H ~ O(100)

The bubble sizeis R, ~ 3/8 and the wall velocity v,

The amount of latent heat A that is transformed into
Kinetic energy K in the plasma:

K

Ptot
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Back of the envelope

The peak frequency at production is linked to the bubble
size or the duration of the phase transition

wpeak — 5 — 0(100) H

After the redshift, this amounts to

6] T
100 H 100GeV

mHz

Wpeak =

Since GWs behave as radiation, {2y is only redshifted
after the transition to matter domination.



Observation

dark sector phase transition, T ~ MeV

Impact of the phase transition parameters on the GWB spectrum
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State-of-the-art: simulations

[Hindmarsh, Huber , Rummukainen, Weir '13, '15, '17]

[Weir '16] [Gould, Sukuvaara,Weir '21] [Cutting, Hindmarsh, Weir '18&’19]
[Cutting, Escartin, Hindmarsh, Weir '20]

Depending on the context, the system can be descibed using
hydrodynamics (fluid + Higgs) or just a scalar field

The produced GW
spectrum can be read
off from the simulation.
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Really robust results,
not many a priori
assumptions.

But very costly.
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Single bubble: spherical

solutions
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Many insights can be gained by studying the expansion of a
single bubble.

Hydrodynamics dictates how the latent heat sets the plasma

into motion and how much energy is transformed into bulk
motion vs heating the plasma.



Bubble wall thickness

The main challenge in the hydrodynamic simulation is to cover very
different length scales.

In the physical phase transition

wall thickness <<<<<<< fluid shell thickness < bubble size
1/100GeV % of Hubble radius

In simulations:

grid spacing < (wall thickness < fluid shell thickness < bubble size) < DOX Size
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Higgsless simulations

In order to avoid this issue, we want to perform
simulations that are agnostic about the wall
thickness. This would resemble an £/~7 where
the Higgs field was integrated out.

However, this requires a hydrodynamic
numerical framework that can deal with shocks
and other discontinuities:
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Higgsless simulations

Consider the differential equation of a right-mover
(at =+ aw) f(t,:z:) =0
With the solution

f(t,ZIJ) :g(ZIJ—t)

When this equation is numerically solved, typically one of two
ISsues occurs

S I S |

too much viscosity not enough viscosity
damping Gibbs oscillations



Higgsless simulations

|deally one wants to have a
scheme that abides to 04
variation diminishing to avoid
oscillations.

Viscosity should be minimal to
reduce damping.

This can be achieved via
nybridization (adding non-
linear terms) in a semi-
discrete scheme.

For conservation laws, this is
for example possible via the
Kurganov-Tadmor method.

New High-Resolution Central Schemes
for Nonlinear Conservation Laws and
Convection-Diffusion Equations

Alexander Kurganov* and Eitan Tadmort

* Department of Mathematies, University of Michigan, Ann Arbor, Michigan 48109;
and fDepartment of Mathematics, UCLA, Los Angeles, California 90095
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Central schemes may serve as universal finite-difference methods for solving non-
linear convection—diffusion equations in the sense that they are not tied to the specific
eigenstructure of the problem, and hence can be implemented in a straightforward
manner as black-box solvers for general conservation laws and related equations gov-
erning the spontaneous evolution of large gradient phenomena. The first-order Lax—
Friedrichs scheme (P. D. Lax, 1954) is the forerunner for such central schemes. The
central Nessyahu—Tadmor (NT) scheme (H. Nessyahu and E. Tadmor, 1990) offers
higherresolution while retaining the simplicity of the Riemann-solver-free approach.
The numerical viscosity present in these central schemes is of order O((Ax)* / At).
In the convective regime where Az ~ Ax, the improved resolution of the NT scheme
and its generalizations is achieved by lowering the amount of numerical viscosity
with increasing r. At the same time, this family of central schemes suffers from
excessive numerical viscosity when a sufficiently small time step is enforced, e.g.,
due to the presence of degenerate diffusion terms.

In this paper we introduce a new family of central schemes which retain the sim-



Simulation of cosmological

dhase transitions

We recently developed a highly efficient scheme to simulate
relativistic hydrodynamics during cosmological first-order
phase transitions.
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These simulations allow to extract GW spectra from the
phase transition in a few hours instead of weeks

(factor 2000 speed improvement compared to former
approaches)



Simulation of cosmological

dhase transitions

The spectra have o iealures due to the
bubble size and the shell thickness.

arr
1=t \ k B 3
10784
10710

|3 L1

q/B

[Jinno, TK, Rubira, Stomberg 2022]
[Hindmarsh 2016]



Simulation of cosmological

dhase transitions

The setup allows to run many simulations a day and to
extract the GW spectra as functions of the PT properties:
wall velocity v, PT strength a
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Some conclusions
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Using these simultions, by now, we have very accurate and
reliable predictions of GW spectra from cosmological phase
transitions.

There are still some loose end though: deep IR, role of
turbulence
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Pulsar timing array

Credit: David Champion/Max Planck Institute for Radio Astronomy




New data release

NanoGrav measured a common red noise spectrum
in the nHz regime (1/10 year)
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Other PTA experiements had similar results with somewhat
less statistics (EPTA, PPTA, CPTA)
[NanoGrav 2023]



Are these really GWs?

The smoking gun for a stochastic GW source is a correlation
that follows the Hellings-Downs curve
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The data seems to support a Hellings-Downs curve, even
though there is also a quite large monopole.

[NanoGrav 2023]



Where do they come from?

The currently favored interpretation is in terms of

a population of supermassive black hole mergers.

Still, the amplitude is on the low side and the spectrum seems a
bit steep.

A 00

o

log;pAgws

\

‘|1|\|||||l=r

& | NANOGrav 15-year NN
% [#OLODECK Sims | i i o I\

/

[NanoGrav 2023]



Can GWs from phase transitions
fit the data?
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But so can cosmic strings, domain walls, PBHs from inflation ...

[NanoGrav 2023]



Actually, very well ...
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The power law fit is somewhere between the
IR tail and plateau. So the fit will probably further improve with the

new spectra.
[NanoGrav 2023]



Actually, very well ...
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The power law fit is somewhere between the
IR tail and plateau. So the fit will probably further improve with the

new spectra.
[NanoGrav 2023]



How to distiguish SMBHs from

cosmoloaical backarounds?

There are in principle different ways to distinguish a
background from supermassive black holes from a
stochastic cosmological background

1) In principle the shape of the power spectrum can
provide information.

2) For a SMBH background, isolated point sources should
be at some point identifyable

3) more general, one would expect some anisotropies for
SMBHSs

4) specific cosmological models might have additional
signatures

5) Signal in LISA/LIGO



Cosmological constraints on a

MeV dark phase transition

Even if the phase transition happens in a dark sector, the GW signal is
constrained by CMB and BBN observations.

If the dark sector is stable, a strong phase transition implies a large
deviation for N_.

3Bayes factors for a phase transition vs. only pulsar-intrinsic red noise
10
F3.00

250
102 3

200

I
10" F1l.50 §
F1.00 N

Bayes factor

100 -

No perceolation
for I = const

F0.50
r0.00
F0.50
Fr1.0o

@ Bubble wall collisions, stable dark sector

10_1 T T T T T |
1 3 5 e 9 11
Lower boundary of 8/H prior

If the dark sector is unstable, the coupling to the SM can be potentially
seen in beam dump experiments.

[Bringmann, Depta, TK, Schmidt-Hoberg,
Tasillo 2023]



Anisotropies

No anisotropies have been found so far.
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The bands denote expectations from SMBH.

The measurements are upper limits. .~ o



Isolated sources

A fit to a GW background + isolated sources does not
favor adding an isolated source
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Conclusions

Evidence for a stochastic GW background is building up
In all PTA experiments. A combined result will further
Improve the statistics.

The mergers of supermassive black holes are a plausible
Interpretation of this signal.

But there are also some indications that the origin might
be cosmological.

Dark phase transitions at the MeV are a possible
candidate but require a prompt decay of the energy from
the dark sector into the SM. This can lead to additional
sighatures.
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