LISA (and PTA) and γ -ray telescopes as multi-messenger probes of a first-order cosmological phase transition

Théorie, Universe et Gravitation, LPENS (Oct. 12, 2023)

Alberto Roper Pol University of Geneva

SNSF Ambizione fellow

Collaborators: T. Boyer (APC), C. Caprini (UniGe & CERN), A. Neronov (APC & EPFL), S. Procacci (UBern), D. Semikoz (APC)

arXiv:2009.14174, 2201.05630, 2307.10744, 2308.12943

https://github.com/AlbertoRoper/cosmoGW [CosmoGW]

Probing the early Universe with GWs

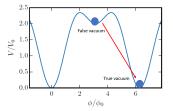
Cosmological (pre-recombination) GW background

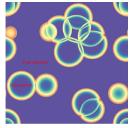
• Why background? Individual sources are not resoluble, superposition of single events occurring in the whole Universe.

$$f_* \simeq 1.64 imes 10^{-3} rac{100}{R_* \mathcal{H}_*} rac{T_*}{100 \, {
m GeV}} \, {
m Hz}$$

- Phase transitions
 - Ground-based detectors (LVK, ET, CE) frequencies are 10–1000 Hz Peccei-Quinn, B-L, left-right symmetries $\sim 10^7, 10^8$ GeV.
 - Space-based detectors (LISA) frequencies are 10^{-5} - 10^{-2} Hz Electroweak phase transition ~ 100 GeV
 - Pulsar Timing Array (PTA) frequencies are 10⁻⁹-10⁻⁷ Hz
 Quark confinement (QCD) phase transition ~ 100 MeV
- From inflation
 - *B*-modes of CMB anisotropies ($f_c \sim 10^{-18}$ Hz).
 - Can cover all f spectrum, depending on end-of-reheating T, and blue-tilted (beyond slow-roll inflation).

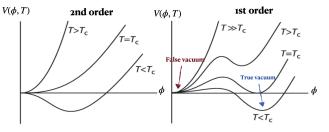
Cosmological GWs


▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

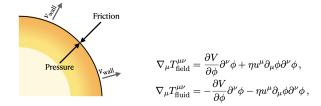

Cosmological GWs have the potential to provide us with *direct* information on early universe physics that is not accessible via electromagnetic observations, possibly complementary to collider experiments:

nature of first-order phase transitions (baryogenesis, BSM physics, high-energy physics), primordial origin of intergalactic magnetic fields.

First-order phase transition


$$V(\phi, T) = \frac{1}{2}M^{2}(T)\phi^{2} - \frac{1}{3}\delta(T)\phi^{3} + \frac{1}{4}\lambda\phi^{4}$$

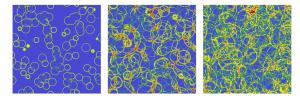
Credits: D. Weir (above),


I. Stomberg (below)

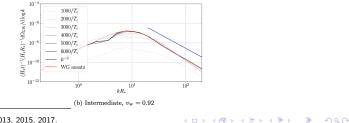
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Hydrodynamics of first-order phase transitions¹

- Broken-phase bubbles are nucleated and expand
- Friction from particles yield a terminal velocity ξ_w of the bubbles
- The bubble can run away when the friction is not enough to stop the bubble's acceleration

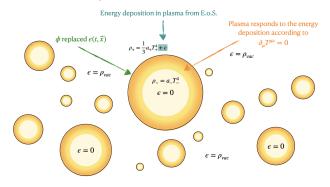


・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ


Espinosa, Konstandin, No, Servant, JCAP **06** (2010) 028.

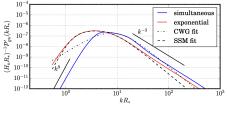
GWs from sound waves²

• Numerical simulations of the scalar + fluid system can be performed including an effective friction term


• Two scales are found that determine the GW spectrum: R_* and ΔR_* (sound-shell thickness).

²Hindmarsh *et al.*, 2013, 2015, 2017.

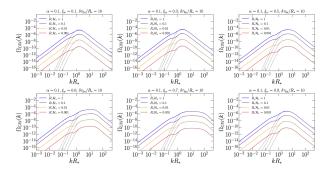
GWs from sound waves: Higgsless simulations³


- Difficulty on simulations is due to the different scales of the scalar field φ and the fluid shell, so one can consider a nucleation history and set the pressure and energy density by knowing the value of ε and setting it during the simulation.
- Effect of bubble collisions on GWs is subdominant when sound waves are produced, so one can ignore the scalar field.

Credit: I. Stomberg

GWs from sound waves: Sound-shell model⁴

- The sound-shell model assumes linear superposition of velocity fields from each of the single bubbles and averages over nucleation locations and bubbles lifetimes (semi-analytical model), and the development of sound waves at the time of collisions.
- It predicts a steep k⁹ spectrum and linear growth with time, according to HH19, and k⁻³ at large frequencies, with an intermediate k between 1/R_{*} and 1/ΔR_{*}.

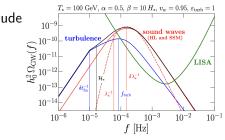

(b) Intermediate, $v_{\rm w} = 0.92$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

⁴Hindmarsh, 2016; Hindmarsh & Hijazi, 2019.

GWs from sound waves: Sound-shell model revisited⁵

- Extended sound-shell model to an expanding Universe and omitted assumptions that were not holding at small k.
- Recovered k³ at small frequencies and found a ln² time evolution of the causal branch and the linear-in-time evolution around the peak, as well as a sharp bump.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

GW sources in the early universe

- Magnetohydrodynamic (MHD) sources of GWs:
 - Sound waves generated from first-order phase transitions.
 - (M)HD turbulence from first-order phase transitions.
 - Primordial magnetic fields.
- High-conductivity of the early universe leads to a high-coupling between magnetic and velocity fields.
- Other sources of GWs include
 - Bubble collisions.
 - Cosmic strings.
 - Primordial black holes.
 - Inflation.

ARP et al., 2307.10744, 2308.12943

・ロト・四ト・ヨト・ヨー うくや

Primordial magnetic fields

- Magnetic fields can either be produced at or present during cosmological phase transitions.
- The magnetic fields are strongly coupled to the primordial plasma and inevitably lead to MHD turbulence.⁶
- Present magnetic fields can be amplified by primordial turbulence via dynamo.⁷

⁶J. Ahonen and K. Enqvist, *Phys. Lett. B* 382, 40 (1996).

Generation of primordial magnetic fields

- Bubble collisions and velocity fields induced by first-order phase transitions can amplify seed magnetic fields.
- Parity-violating processes during the EWPT are predicted by SM extensions that account for baryogenesis and can produce helical magnetic fields through sphaleron decay or B+L anomalies.⁸

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} - i \frac{2\sin\theta_w}{gv^2} \boldsymbol{\nabla} \Phi^{\dagger} \times \boldsymbol{\nabla} \Phi$$

Axion fields can amplify and produce magnetic field helicity.⁹

$$\mathcal{L} \supset rac{\phi}{f} \mathcal{F}_{\mu
u} ilde{\mathcal{F}}^{\mu
u}$$

⁸T. Vachaspati, Phys. Rev. B 265, 258 (1991), T. Vachaspati, Phys. Rev. Lett. 87, 251302 (2001),

J. M. Cornwall, Phys. Rev. D 56, 6146 (1997).

⁹ M. M. Forbes and A. R. Zhitnitsky, Phys. Rev. Lett. 85, 5268 (2000). < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generation of primordial magnetic fields

- Inhomogeneities in the Higgs field in low-scale electroweak hybrid inflation.¹⁰
- Magnetic fields from inflation can be present during phase transitions (non-helical¹¹ and helical¹²).
- Low-scale (QCD and EWPT) magnetogenesis during reheating.¹³

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• Chiral magnetic effect.¹⁴

¹⁰ M. Joyce and M. E. Shaposhnikov, *Phys. Rev. Lett.* **79**, 1193 (1997), J. García-Bellido *et al.*, *Phys. Rev. D* **60**, 123504 (1999).

¹¹M. S. Turner and L. M. Widrow, *Phys. Rev. D* 37, 2743 (1988).

¹²M. Giovannini, Phys. Rev. D 58, 124027 (1998).

¹³R. Sharma, *Phys. Rev. D* **97**, 083503 (2018).

¹⁴M. Joyce and M. E. Shaposhnikov, *PRL* **79**, 1193 (1997).

Conservation laws for MHD turbulence

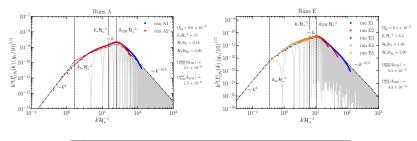
$$T^{\mu
u}_{;
u} = 0, \quad F^{\mu
u}_{;
u} = -J^{\mu}, \quad \tilde{F}^{\mu
u}_{;
u} = 0$$

In the limit of subrelativistic bulk flow:

$$\gamma^2 \sim 1 + (v/c)^2 + \mathcal{O}(v/c)^4$$

Relativistic MHD equations are reduced to¹⁵

$$\begin{split} \frac{\partial \ln \rho}{\partial t} &= -\frac{4}{3} \left(\nabla \cdot \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \ln \rho \right) + \frac{1}{\rho} \left[\boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) + \eta \boldsymbol{J}^2 \right], \\ \frac{D \boldsymbol{u}}{D t} &= \frac{1}{3} \boldsymbol{u} \left(\nabla \cdot \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \ln \rho \right) - \frac{\boldsymbol{u}}{\rho} \left[\boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) + \eta J^2 \right] \\ &- \frac{1}{4} \nabla \ln \rho + \frac{3}{4\rho} \boldsymbol{J} \times \boldsymbol{B} + \frac{2}{\rho} \nabla \cdot (\rho \nu \boldsymbol{S}), \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \nabla \times (\boldsymbol{u} \times \boldsymbol{B} - \eta \boldsymbol{J}), \quad \boldsymbol{J} = \nabla \times \boldsymbol{B}, \end{split}$$


for a flat expanding universe with comoving and normalized

 $p = a^4 p_{\text{phys}}, \rho = a^4 \rho_{\text{phys}}, B_i = a^2 B_{i,\text{phys}}, u_i$, and conformal time $t \ (dt = a dt_c)$.

¹⁵A. Brandenburg, et al., Phys. Rev. D 54, 1291 (1996).

^{▲□▶ ▲□▶ ▲}三▶ ▲三▶ ▲□ ◇ ◇ ◇

Numerical results for nonhelical decaying MHD turbulence¹⁶

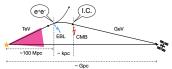
run	Ω_{M}^{*}	$k_*\mathcal{H}_*^{-1}$	$\mathcal{H}_*\delta t_e$	$\mathcal{H}_*\delta t_{\rm fin}$	$\Omega_{\rm GW}^{\rm num}(k_{\rm GW})$	$[\Omega_{\rm GW}^{\rm env}/\Omega_{\rm GW}^{\rm num}](k_{\rm GW})$	n	\mathcal{H}_*L	$\mathcal{H}_{*}t_{\mathrm{end}}$	$\mathcal{H}_*\eta$
A1	$9.6 imes 10^{-2}$	15	0.176	0.60	2.1×10^{-9}	1.357	768	6π	9	10^{-7}
A2	-	-	-	-	-	-	768	12π	9	10^{-6}
E1	$8.1 imes 10^{-3}$	6.5	1.398	2.90	5.5×10^{-11}	1.184	512	4π	8	10^{-7}
E2	-	-	-	-	-	-	512	10π	18	10^{-7}
E3	-	-	-	-	-	-	512	20π	61	10^{-7}
E4	-	-	-	-	-	_	512	30π	114	10^{-7}
E5	-	-	-	-	-	-	512	60π	234	10^{-7}

¹⁶ARP et al., Phys. Rev. D **105**, 123502 (2022).

Analytical model for GWs from decaying turbulence

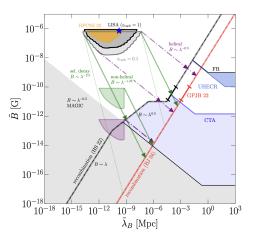
- Assumption: magnetic or velocity field evolution δt_e ~ 1/(u_{*}k_{*}) is slow compared to the GW dynamics (δt_{GW} ~ 1/k) at all k ≥ u_{*}k_{*}.
- We can derive an analytical expression for nonhelical fields of the envelope of the oscillations¹⁷ of Ω_{GW}(k).

$$\begin{split} \Omega_{\rm GW}(k,t_{\rm fin}) &\approx 3 \left(\frac{k}{k_*}\right)^3 {\Omega_{\rm M}^*}^2 \frac{\mathcal{C}(\alpha)}{\mathcal{A}^2(\alpha)} \ p_{\Pi}\left(\frac{k}{k_*}\right) \\ &\times \begin{cases} \ln^2[1+\mathcal{H}_*\delta t_{\rm fin}] & \text{if } k \, \delta t_{\rm fin} < 1, \\ \ln^2[1+(k/\mathcal{H}_*)^{-1}] & \text{if } k \, \delta t_{\rm fin} \ge 1. \end{cases} \end{split}$$


*p*_Π is the anisotropic stress spectrum and depends on spectral shape, can be approximated for a von Kárman spectrum as¹⁸

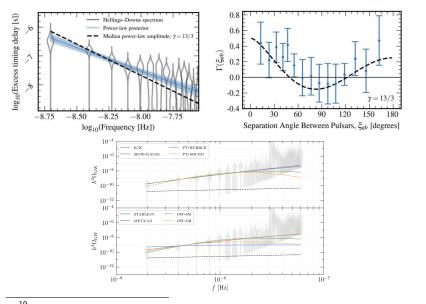
$$p_{\Pi}(k/k_*) \simeq \left[1 + \left(\frac{k}{2.2k_*}\right)^{2.15}\right]^{-11/(3 \times 2.15)}$$

- ¹⁷ARP et al., Phys. Rev. D 105, 123502 (2022).
- ¹⁸ARP et al., arXiv:2307.10744 (2023).

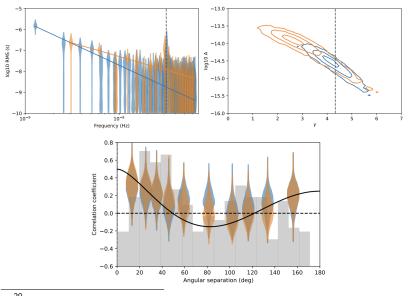

Primordial magnetic fields³

 Primordial magnetic fields would evolve through the history of the universe up to the present time and could explain the lower bounds in cosmic voids derived by the Fermi collaboration.⁴

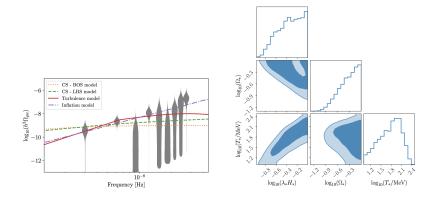
- Maximum amplitude of primordial magnetic fields is constrained by the big bang nucleosynthesis.⁵
- Additional constraints from CMB, Faraday Rotation, ultra-high energy cosmic rays (UHECR).


- ⁴A. Neronov and I. Vovk, *Science* **328**, 73 (2010).
- ⁵V. F. Shvartsman, *Pisma Zh. Eksp. Teor. Fiz.* **9**, 315 (1969).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで


³ARP et al., arXiv:2307.10744 (2023).

NANOGrav 15 yr data observation¹⁹


¹⁹[NANOGrav collaboration], *ApJ Lett.* **951**, 8 & 11 (2023).

EPTA 24.7 yr data observation (DR 2)²⁰

²⁰[EPTA Collaboration], arXiv:2306.16224.

Primordial magnetic fields constraints with EPTA DR 2²¹

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへ⊙

 $^{^{21}[{\}sf EPTA}\ {\sf collab.}]$ (incl. ARP), arXiv:2306.16227 (2023).

Conclusions

- Velocity and magnetic fields in the early universe can significantly contribute to the stochastic GW background (SGWB) via sound waves and (M)HD turbulence.
- MHD requires, in general, performing high-resolution numerical simulations, which can be done using the PENCIL CODE.
- Since the SGWB is a superposition of different sources, it is extremely
 important to characterize the different sources, to be able to extract clean
 information from the early universe physics.
- The interplay between sound waves and the development of turbulence is not well understood. It plays an important role on the relative amplitude of both sources of GWs.
- LISA, PTA, and next-generation ground-based detectors can potentially be used to probe the origin of magnetic fields in the largest scales of our Universe, which is still an open question in cosmology.
- Bubble nuccleation, sound wave production, and magnetogenesis physics can be coupled to our equations for more realistic production analysis (future work).

The End Thank You!

alberto.roperpol@unige.ch

github.com/AlbertoRoper/cosmoGW cosmology.unige.ch/users/alberto-roper-pol

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●