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QG Questions
• What are the fundamental QG degrees of freedom?  
• What is the geometrical entropy counting?
• What are the fundamental observables?
• Can we provide a model of quantum gravity that respect the presence of a Planckian cutoff 

and the principle of general covariance
• Is there an optimal way to regulate covariant in way compatible with symmetry ?
• How does quantum geometry affect UV divergences ?

• Local Holography:  A bottom-up perspective which comes from new questions: 

• Developing new tools: Covariant phase space,  Coadjoint orbits
                                 Representation theory of sphere loop groups, 
                                 Carrollian geometry, Hamiltonian Fluid dynamics  

• How do we decompose a gravitational sytems into subsystems?
• What is the nature of entanglement across subregions ?
• How do we understand the quantization of QFT and QG in finite regions?
• What are the symmetries of gravity ?
• What are the local quantum reference frames ?



Local Holography

• In gravity the subregion entanglement is controlled by a symmetry group called the 
corner symmetry group, which follows from gauge invariance of the total space.

• This symmetry group is universal. It gives us semi-classical phase space tools to 
understand quantum geometry in the continuum 

• At the quantum level finding the group representations amount to quantizing 
geometry.  The symmetry generators and their Casimirs acts as geometrical operators

• Einstein’s equations are charge conservation laws for the symmetry generators
•  Recent developments are showing that the area operator action is connected to the 

modular group action
• Taking the limit of infinitely large regions naturally connects this approach with S-

matrix quantization, asymptotic symmetries and soft theorems through celestial 
holography



Space entanglement
• Given   a Cauchy slice.  We chose a 2d surface that divide the slice into 2 

subregions 
• S is the entangling surface it defines the codimension 2 corner of the sustaining 

causal diamond 

Σ
Σ = ΣL ∪ ΣR

ΣL
ΣR

S
ΣLS

• We denote  the algebra of observable associated with the region  and  the 
corresponding Hilbert space obtained by acting with  on a vacuum state 

𝒜Σ Σ ℋΣ
𝒜Σ

• In Quantum mechanics we have double factorizability.                    
   and     𝒜Σ = 𝒜ΣL

∨ 𝒜ΣR
ℋΣ = ℋΣL

⊗ ℋΣR

Causal domain of 
dependence of  Int(S)

• The modular group is the one dimensional group generated by 
2π
ℏ

KΨ = − ln ρL

ρL = TrHL
|Ψ⟩⟨Ψ |

Modular Hamiltonian 

• Entropy  S = ⟨Ψ |KΨ |Ψ⟩
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Reeh-Schlieder theoremInfinite vaccuum entanglement

ΔKΨ = ∞• UV divergences implies that 

• Bisognano-Wichman theorem       is equal to the boost generator for S a symmetry axisK|0⟩
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Gauge invariant 
Observables are non local

• One expect UV divergences resolution from Quantum gravity  ΔKΨ =
⟨AS⟩
4G

K.Zurek, 
E. Verlinde 19
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The factorability property of the algebra of observable in QG is governed by a symmetry group.



Gauge symmetry resolves entanglement
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(3.17)

⌃ S (3.18)
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Qξ(ΣL) =̂ ∫∂ΣL

qξ

• In gauge theory and gravity, when no boundary exists the time evolution 
generator is a constraints .

• The situation changes in the presence of a spacetime boundary or a spacetime 
corner

• In the presence of a spacetime boundary or a spacetime  corner the time 
evolution operator is entirely supported on codimension 2 corners.

• Corners unlike boundaries do not need the specification of boundary conditions

Cξ =̂ 0

E. Noether 1918
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• In gauge theory and gravity, when no boundary exists the time evolution 
generator is a constraints .

• The situation changes in the presence of a spacetime boundary or a spacetime 
corner

• In the presence of a spacetime boundary or a spacetime  corner the time 
evolution operator is entirely supported on codimension 2 corners.

• Corners unlike boundaries do not need the specification of boundary conditions
• This property is, when we have no out-going radiation at infinity, the fundamental 

expression of gravitational holography

Cξ =̂ 0

E. Noether 1918

D. Marolf 2008

Qξ(ΣL) =̂ ∫∂ΣL

qξ
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• In gauge theory and gravity, when no boundary exists the time evolution 
generator is a constraints .

• The situation changes in the presence of a spacetime boundary or a spacetime 
corner

• In the presence of a spacetime boundary or a spacetime  corner the time 
evolution operator is entirely supported on codimension 2 corners.

• Corners unlike boundaries do not need the specification of boundary conditions
• This property is, when we have out-going radiation at infinity, the fundamental 

expression of  celestial holography
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• In gauge theory and gravity, when no boundary exists the time evolution 
generator is a constraints .

• The situation changes in the presence of a spacetime boundary or a spacetime 
corner

• In the presence of a spacetime boundary or a spacetime  corner the time 
evolution operator is entirely supported on codimension 2 corners.

• Corners unlike boundaries do not need the specification of boundary conditions
• This property is for finite corners the fundamental expression of local holography

Cξ =̂ 0

E. Noether 1918

W. Donnelly, LF 2016

Qξ(ΣL) =̂ ∫∂ΣL

qξ
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• In gauge theory and gravity, when no boundary exists the time evolution 
generator is a constraints .

• The situation changes in the presence of a spacetime boundary or a spacetime 
corner

• In the presence of a spacetime boundary or a spacetime  corner the time 
evolution operator is entirely supported on codimension 2 corners.

• Corners unlike boundaries do not need the specification of boundary conditions
• This property is for finite corners the fundamental expression of local holography 

Entangling corners carries the representation of a fundamental group of symmetry 
the corner symmetry group . The modular group which contains boost hinging 
along S is a distinguished subgroup of 

• Noether theorem tells us that the charges represents elements of the spacetime 
geometry 

• Finding the quantum representation of  is equivalent to quantizing geometry 

Cξ =̂ 0

GS
GS

GS

[Qξ, Qχ] = iQ[ξ,χ]
Non-commutativity of the corner metric components

Qξ(ΣL) =̂ ∫∂ΣL

qξ
E. Noether 1918

Understanding the quantum causal diamond

W. Donnelly, LF 2016



Symmetries and Gravity
• Given a region R with slice  the symmetry charges are supported on 

codimension 2 corners      = entangling sphere
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• In metric gravity 

Group  = Kinematical  + dynamical

ĜS = (Diff(S) ⋉ SL(2,ℝ)S) ⋉ ℝ2S̄

W. Donnelly, L.F 2016 

• The extended corner symmetry group  is the subgroup of Diff(M) which 
and possesses non zero Noether charges in the presence of S, its with 
kinematical subgroup  preserves the region R.

GS

GS ⊂ ĜS

L.F, Leigh, Ciambelli’ 21 



Symmetries and Gravity
• Given a region R with slice  the symmetry charges are supported on 

codimension 2 corners      = entangling sphere
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• Double Universality of  for metric gravity!
    -Same group for infinitesimal diamond or very large ones
    -Same group for Einstein gravity or any other higher derivative formulation    
     of gravity no matter how many extra derivative

ĜS

• What changes is either the choice of representation or the canonical representation of the 
symmetry generators: By Noether theorem symmetry generator are expressed in terms of 
metric components pulled back to S

• In metric gravity 

Group  = Kinematical  + dynamical

ĜS = (Diff(S) ⋉ SL(2,ℝ)S) ⋉ ℝ2S̄

W. Donnelly, L.F 2016 

Wald, Speranza’17

• The extended corner symmetry group  is the subgroup of Diff(M) which 
and possesses non zero Noether charges in the presence of S, its with 
kinematical subgroup  preserves the region R.

GS

HS ⊂ GS

L.F, Leigh, Ciambelli’ 21 



Symmetry on null surfaces
‣ Local gravitational symmetries are attached to codimension 2 corner:  In 

metric gravity this group is the extended corner symmetry group (Universal)

‣When we study Horizon, asymptotic infinity or the nature of quantum radiation 
one focuses our attention onto a specific null surface. In that case the subgroup 
preserving the preserving the null structure ( Thermal Carrollian structure) is 
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⇠ = T@u + Y A@A +W (u@u � r@r)
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S
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↵ = Y`m
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r5�i
 i + · · ·

 4  3,  2,  1, 0

BMSW = (Di↵(S)nWeyl)n RS

GS = (Di↵(S)n SL(2,R))n R2S
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Introducing the Bondi coordinates xµ = (u, r, �A), where �A denote coordinates on the celestial

2-sphere, asymptotically flat metrics in the Bondi gauge take the general form

ds2 = �2e2�du(dr + �du) + r2�AB

✓
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Expanding this metric to order 1/r and solving the asymptotic Einstein’s equation to that order

means that
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LF, Oliveri, Pranzetti Speziale ‘21
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‣ At infinity, same group, conservation law are associated with GBMS 
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ĜS = (Diff(S) ⋉ SL(2,ℝ)S) ⋉ ℝ2S



Quantum Corner symmetry

• What are the reps? what are the Casimirs?
• The little group is the group that preserves 
• The subgroup generated by  is the local modular boost group

• In gravity we have that for states representing minimal surfaces   

• Representations are classified by representations of the area preserving
  Diffeomorphism subgroup: Coadjoint orbits

q

K =
A

4G

• The outer curvature generator     form a representation of the area preserving 
diffeomorphisms algebra
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2
2 + Ñ
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4• The Casimirs  are then given by 

Donnelly, Moosavian,
Speranza, LF’GS = Diff(S) ⋉ SL(2,ℝ)S
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Quantum fluid
W. Donnelly, A. Speranza, F.M 

Moosavian, L.F 2020 
 is isomorphic to the symmetry groups of 2d hydrodynamicsGS

• Analogy:  the area density  plays the role of the fluid density  
    The outer curvature  plays the role of the fluid vorticity 

q ρ
Ω w

• The quantum representations are classified by a choice of 
area and vorticity densities  on S.(ρ, w)

Arnold’66; Marsden, Ratiu’95 
Khesin’17 

• Classical fluid corresponds to a choice of density density measure  which is absolutely 
continuous with respect to the Lebesgue measure

ρ > 0

• Quantum fluid corresponds to a choice where both   and  are counting measures.
                           This gives a constituent picture to the fluid

ρ w

•  can be related to labels of the coadjoint orbits (hence 
representation) of the `fluid group’  
(ρ, w)

GS

isomorphic

Classification of quantum representation of corner group isomorphic 
to the representation theory of 

• Area constituent in the continuum from quantization! LF,Geiller, Wieland ’22



Dynamics along null surfaces
• The gravitational evolution along null surfaces can be entirely formulated as 

conservation laws for the corner charges

Three main results for dynamics along causal Horizons: 
Carollian structure  such that (ℓa, qab) ℓaqab = 0
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𝒩 𝒥

• The Gravitational dynamics projected on  can be recast as a set of Null 
conservation Laws   

𝒩
DbTa

b = 0
Donnay, Marteau ’19

LF, Hopfmueller,’19; Sheikh-Jabbari’20
Speranza, Flanagan, Chandrasekaran 21

Ashtekar, Khera, Kolanowski, Lewandowski 22
LF, P Jai-Akson 22

Quantization of the Einstein equation

Carrollian energy-
momentum tensor

• This dynamics can be understood as the conservation of charges for a universal null surface 
symmetry group BMSW

• The dynamics can be understood in terms of a canonical structure associated with 

Ta
b = τaℓb + τa

b

Carrollian connection

Θ𝖼𝖺𝗇 =
1

8πG ∫𝒩
( 1

2 τabδqab − τaδℓa)ϵ𝒩

Quantum Raychauduri Ciambelli, Leigh, F  23

• Conservation laws are the expression of diffeomorphism invariance 



Quantum Raychauduri
• The symplectic structure on null surfaces contains 3 geometric elements:

Spin 0 pair:  where  is the area form,  and   (inaffinity +expansion)
Spin 1 pair:  where  is the boost connection
Spin 2 pair:  where  is the conformal metric and  is the shear

(Ω, μ) Ω = q μ = κ +
θ
2(πa, ℓa) πa = kbDaℓb

(q̄ab, σab) q̄ab = qab/Ω σab = 1
2 ∂vq̄ab

Θ𝖼𝖺𝗇 =
1

8πG ∫𝒩
( 1

2 σabδq̄ab − μδΩ)ϵ𝒩

can be understood as a balance equation between a sum of stress tensors

• Spin 0 and spin 1 represents the quantum geometry degrees of freedom ( geometric backreaction), 
while spin2 and matter represents the hard (EFT) degrees of freedom  

T(0) + T(2) + Tmatter = 0

• Raychaudhuri equation ∂2
vΩ = μΩ − Ω ( 1

2 σ2 + 8πGTmatter
vv )

Ciambelli, Leigh, F  23



Balance equation

• Given  they satisfy a Virasoro algebra above each point on the sphereT(i)[ f ] = ∫𝒩
f(v, σ)T(i)(v, σ)

T(0) =
1

8πG (∂2
vΩ − μ∂vΩ) T(2) =

1
16πG

σabσab Tmatt = (∂vϕ)2

• Raychaudhuri equation can be understood as a balance equation between a sum of stress tensors

C := T(0) + T(2) + Tmatter = 0

{T(i)[ f ], T( j)[g]} = δijT[ f ·g − g ·f ] + O(G)

• At the quantum level the UV divergences shows itself as the fact that the total central charge is ∞

• Gravity manifest itself in the presence of a non-zero stress tensor for geometry itself (spin 0).
  is necessary to sustain the balance equation as T(0) ≠ 0 T(2), Tmatt ≥ 0

• Regulating UV divergences means allowing  to be finite ctotal

beta-gamma twisted CFT Spin2  CFT Matter  CFT



Quantum Time
• The spin 0 momenta represent a choice of dynamical time variable:  (v, σA) → (V(v, σ), σA), ∂vV ≠ 0

• Raychaudhuri can be solved non-perturbatively  away from caustic   as  ∂vΩ ≠ 0 V = V̄(Ω, σ)

Boost operator in areal 
time

μ =
∂2

vV
∂vV

∂ΩV̄ = exp∫
Ω

dΩ′ Ω′ (σ2 + 8πGTmatt
ΩΩ )

• Using the dressing time  one can construct gauge invariant observables q̃ab(v, σA) = qab(V, σA)

• After resolution of the constraint the dressing  time is a corner observable

• At the quantum level quantum fluctuations of the time variables help resolve some of the UV 
singularity: Edge mode = cross product that reduces type III to type II A. Connes 1968-1970

Witten, Chandrasekaran, Longo 23
Speranza, Sorce, Jensen 23

E.Gesteau, L.F 23-24
ΔKΔT ≥ ℏ and ΔT > 0 ⇒ ΔK < ∞



Entropy
• We can now compute the generator of the local boost generator hinging at a cut V = 0

• This canonical generator is K(σ) :=
1

4G
(Ω − V∂VΩ)

∂vK = V ( σ2

4G
+ Tmatt

VV ) ϵ𝒩 ≥ 0

• This suggests that  is the proper modular hamiltonianK



Quantum Radiation
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• Quantum Radiation can be described as elementary transitions between 
representation  of 

• These transitions are controlled by the extended symmetry group 
• They can be represented classically in terms of spacetimes carrying 

Impulsive waves 

GS
ĜS

• Impulsive waves are solution of EE which carries non trivial radiations but no energy-
momentum tensor along null sheets. 

• Obtained through simple cut and paste techniques

N
AB = J
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and
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m = M

pA =
1

2
(PA � uDAM)

tAB =
1

3

✓
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21

N
AB = J

A = 0

and

M̃ = 0

m = M

pA =
1

2
(PA � uDAM)

tAB =
1

3

✓
TAB � uDhAPBi +

u2

2
DhADBiM

◆
(8.9)

R1 R2 R3

21

N
AB = J

A = 0

and

M̃ = 0

m = M

pA =
1

2
(PA � uDAM)

tAB =
1

3

✓
TAB � uDhAPBi +

u2

2
DhADBiM

◆
(8.9)

R1 R2 R3

21

N
AB = J

A = 0

and

M̃ = 0

m = M

pA =
1

2
(PA � uDAM)

tAB =
1

3

✓
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21

• At the quantum level we expect these transitions are intertwinners of the extended  
group :  A new picture of quantum dynamics.Gs

LF Pranzetti 21


Wieland

Barrett

• Representations R corresponds to coadjoint orbits of GBMS
Barnich, Ruzziconi’ 21


LF, Moosavian, Pranzetti ‘23

Penrose 72

• Asymptotic states form  representation of GS
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Summary:
• The profound consequences of  Noether theorem for gravitational theories leads to a 

new picture of quantum geometry as a state of representation of the corner symmetry 
group which capture the essence of subregions entanglement. 

• Dynamics along null surfaces is encoded into Carrolian conservation laws for the 
symmetry charges and activated at the quantum level by the representation of the 
dynamical charges and transitions between corners

• It encodes the non-commutativity of geometrical observables associated with subregions 
representing the quantization of geometry. 

• It leads discretization of space from the representation of continuous non-commutative infinite 
dimensional algebras represented as quantum fluid at the corner.

• These concepts can be extended to asymptotic Dynamics which connects to S-
matrix calculations and reveals a new tower of higher spin symmetry responsible 
for all known soft theorems
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Thank You !
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Diffferent Corner symmetry
• For a different formulation of gravity we have  LF = LEH + dℓF/EH

ΩF = ΩEH + dΩF/EH

• Different formulation have different symmetry groups   Inequivalent quantization 

ĜS = (Diff(S) ⋉ KS) ⋉ ℝ2S̄

Einstein-Hilbert                        
Einstein-Cartan-Holst               

KS = SL(2,ℝ)S
⊥

KS = SL(2,ℂ)S
∥ × SL(2,ℝ)S

∥

• In all cases we have that    Area form!Casimir2(KS) ∝ q Loop gravity input

Electric Flux

Tangential metric  qAB

•  is a subgroup of GSSU(2)S

LF, Geiller, Pranzetti ‘20

{qAB(σ), qCD(σ′ )} = γ(ϵACqBD + ⋯)δ(2)(σ, σ′ )

Perez, Engle, Noui ’10
Bodendorfer ’13

Perez, LF ‘15
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Edge modes and symmetry
• Entangling corners carries the representation of a fundamental group of symmetry 

the corner symmetry group .  The Tomita-Takesaki modular group which 
represents boost hinging along S is a distinguished subgroup of 

• In order to define Gravity in finite region we need a field that tells us where the 
corner is situated 

• This field, called the embedding field or edge mode field is part of the gravitational 
phase space

• It can be used to dress physical operators and allows us to define an extended 
algebra of observables  

•  is the algebra of operators acting on functions on the corner 
symmetry group

• The extended algebra of observable is the cross product algebra 
• It carries a representation of the corner symmetry group
• The full algebra can then be obtained by fusion of extended algebra 

• This mechanism can be extended to more than one subregion  . The 
observable algebra is then obtained from the gluing of many extended subalgebras

GS
GS

X : B3 → Σ

𝒜ext
ΣL

= 𝒜ext
ΣL

∨ 𝒜S
𝒜S = B(L2(GS))

𝒜Σ = 𝒜ΣL
⊠GS

𝒜ΣR

Σ = ∪i Σi

Connes 1973
Venkatesa, Witten et al 2023

 Speranza et al. 2023
LF,  E Gesteau 2022

W. Donnelly, LF 2016
Speranza 2017

Leigh, Ciambelli 2021
LF 2021







Charge and Flux
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• Dynamical symmetries carry Flux

• The charges splits into kinematical charges   and dynamical charges.
• The kinematical charges are canonical bracket that  form a quantizable  algebra:  

Corner symmetry group 

ℱξ = 0

GS

IξΩ = δQξ + ℱξ
• Local conservation Law
   = Equation of motion 
         ℓ = ∂t

·Qξ = Q[ξ,ℓ] + Iξℱℓ
Evolution = Rotation + dissipation

[Qξ, Qχ] = iQ[ξ,χ]

Canonical variation = Noether + Flux

Ashtekar Streubel ’81
Wald, Zoupas’ 00

Barnich Troesseart ’10
Pasterski, Strominger, Zhib ’18

Ladha, Campiglia ’18
Pranzetti, Oliveri, Speziale,LF ’21

Ciambelli, Leigh ’21
Wieland’22

• The Dynamical charges form an extended corner symmetry group  also quantizable in a 
extended phase space

ĜS
Ciambelli, Leigh ’21

LF’21

• Einstein’s equation are recasted as quasi-local conservation laws on causal diamond around the 
entangling corner 



Charge and Flux
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• Dynamical symmetries carry Flux

• The charges splits into kinematical charges   and dynamical charges.
• The kinematical charges are canonical bracket that  form a quantizable  algebra:  

Corner symmetry group 

ℱξ = 0

GS

IξΩ = δQξ + ℱξ

• Local conservation Law: Flux balance 

• At the quantum level physical observables form representations of  GS ⊂ ĜS

δℓQξ = Q[ξ,ℓ] + Iξℱℓ
Evolution = Rotation + dissipation

• The Charges represents the non-commutative geometry
Non-commutativity of the corner metric components

[Qξ, Qχ] = iQ[ξ,χ]

Canonical variation = Noether + Flux

Quantising  = Quantizing geometry.GS, ĜS

Ashtekar Streubel ’81
Wald, Zoupas’ 00

Barnich Troesseart ’10
Pasterski, Strominger, Zhib ’18

Ladha, Campiglia ’18
Pranzetti, Oliveri, Speziale,LF ’21

Ciambelli, Leigh ’21
Wieland’22

• The Dynamical charges form an extended corner symmetry group  also quantizable in a 
extended phase space

ĜS
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Quantum fluid W. Donnelly, A. Speranza, F.M 
Moosavian, L.F 2020 

 is isomorphic to the symmetry groups of 2d hydrodynamicsGS

Fluid molecularization  = Area constituent 
Vortex quantization  = momenta quantization

• Analogy:  the area density  plays the role of the fluid density   

    The outer curvature plays the role of the fluid vorticity 

q ρ
w

• Each constituent carries a density, weight and spin (ρi, Δi, si)

M. Geiller, D. Pranzetti, L.F 2021 • This provides a constituent picture where 

ρ = ∑
i

ρiδ(2)(σ, σi)

PA = ∑
i

δ(2)(σ, σi)DA + (ΔiδB
A + siϵA

B)∂Bδ(2)(σ, σi)

Landau; Arnold; Marsden, Ratiu, 

• Area constituent in the continuum from quantization!

LF,Geiller, Wieland ’22
L.F ’23 

• Einstein Cartan gravity with an Immirzi parameter implies that .  
Area gap in the continuum!

ρi = γ ji( ji + 1) Wieland ‘19



34

Quantum fluid W. Donnelly, A. Speranza, F.M 
Moosavian, L.F 2020 

 is isomorphic to the symmetry groups of 2d hydrodynamicsHS

Fluid molecularization  = Area constituent 
Vortex quantization  = momenta quantization

• Analogy:  the area density  plays the role of the fluid density   

    The outer curvature plays the role of the fluid vorticity 

q ρ
w

• Each constituent carries a density, weight and spin (ρi, Δi, si)

• The area preserving diffeomorphisms arises as the large N limit of SU(N)

M. Geiller, D. Pranzetti, L.F 2021 • This provides a constituent picture where 

ρ = ∑
i

ρiδ(2)(σ, σi)

PA = ∑
i

δ(2)(σ, σi)DA + (ΔiδB
A + siϵA

B)∂Bδ(2)(σ, σi)

• Area constituent in the continuum from quantization!
W. Donnelly,  A. Speranza, 
F.M Moosavian, L.F 2022 

Matrix model deformation of Gravity and its symmetry.

Geiller, Wieland,
L.F 2022 

Landau; Arnold; Marsden, Ratiu, 


