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QG Questions

* What are the fundamental QG degrees of freedom!?
* What is the geometrical entropy counting?
* What are the fundamental observables!?

* Can we provide a model of quantum gravity that respect the presence of a Planckian cutoff
and the principle of general covariance

* |s there an optimal way to regulate covariant in way compatible with symmetry !
* How does quantum geometry affect UV divergences !

* Local Holography: A bottom-up perspective which comes from new questions:

* How do we decompose a gravitational sytems into subsystems!?

* What is the nature of entanglement across subregions ?

* How do we understand the quantization of QFT and QG in finite regions!?
* What are the symmetries of gravity !

* What are the local quantum reference frames !

* Developing new tools: Covariant phase space, Coadjoint orbits
Representation theory of sphere loop groups,
Carrollian geometry, Hamiltonian Fluid dynamics



Local Holography

* |In gravity the subregion entanglement is controlled by a symmetry group called the
corner symmetry group, which follows from gauge invariance of the total space.

* This symmetry group is universal. It gives us semi-classical phase space tools to
understand quantum geometry in the continuum

* At the quantum level finding the group representations amount to quantizing
geometry. The symmetry generators and their Casimirs acts as geometrical operators

* Einstein’s equations are charge conservation laws for the symmetry generators

* Recent developments are showing that the area operator action is connected to the
modular group action

* Taking the limit of infinitely large regions naturally connects this approach with S-
matrix quantization, asymptotic symmetries and soft theorems through celestial
holography



Space entanglement

* Given 2 a Cauchy slice. We chose a 2d surface that divide the slice into 2
subregions 2~ = 2., U 2,

* S is the entangling surface it defines the codimension 2 corner of the sustaining

causal diamond S
R ¢ «—— Causal domain of
dependence of Int(S)
S

* We denote &/ the algebra of observable associated with the region 2 and #'s the
corresponding Hilbert space obtained by acting with &5 on a vacuum state

* In Quantum mechanics we have double factorizability.

ngzl:ngzLVQQfZR and %Z:%2L®%2R

/ Modular Hamiltonian
27

. The modular group is the one dimensional group generated by —Ky = — Inp;
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Infinite vaccuum entanglement .
& Reeh-Schlieder theorem

» Bisognano-Wichman theorem — K| is equal to the boost generator for S a symmetry axis

» UV divergences implies that AK‘P — OO
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Gauge invariant
Observables are non local
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<AS> E.Verlinde 19

4G

. One expect UV divergences resolution from Quantum gravity AKy =



Space entanglement

* Given 2 a Cauchy slice. We chose a 2d surface that divide the slice into 2
subregions 2~ = 2., U 2,

* S is the entangling surface it defines the codimension 2 corner of the sustaining

causal diamond S
R ¢ «—— Causal domain of
dependence of Int(S)
S

* We denote &/ the algebra of observable associated with the region 2 and #'s the
corresponding Hilbert space obtained by acting with &5 on a vacuum state

* In Quantum mechanics we have double factorizability.
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* In Relativistic QFT we loose factorizability of the Hilbert space

Ay =y VAy and HyFHy Q Xy since G(Xy,Xy5)F0

* In Gravity and gauge theory we also loose factorizability of observable algebra

A2y NV Ay and s+ Hy Q Xy,

The factorability property of the algebra of observable in QG is governed by a symmetry group.



Gauge symmetry resolves entanglement

* |In gauge theory and gravity, when no boundary exists the time evolution
generator is a constraints C, = 0.

* The situation changes in the presence of a spacetime boundary or a spacetime
corner |
* In the presence of a spacetime boundary or a spacetime corner the time 0Z)) = J q;
evolution operator is entirely supported on codimension 2 corners.  E.Noether 1918 "%
* Corners unlike boundaries do not need the specification of boundary conditions
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* This property is, when we have out-going radiation at infinity, the fundamental A s¢ominger 2014
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* |In gauge theory and gravity, when no boundary exists the time evolution
generator is a constraints C; = 0.

* The situation changes in the presence of a spacetime boundary or a spacetime
corner |

* In the presence of a spacetime boundary or a spacetime corner the time 02)) = J g:
evolution operator is entirely supported on codimension 2 corners. E.Noether 1918 - %L

* Corners unlike boundaries do not need the specification of boundary conditions

* This property is for finite corners the fundamental expression of local holography  W.Donnelly, LF 2016
Entangling corners carries the representation of a fundamental group of symmetry

the corner symmetry group Gg. The modular group which contains boost hinging
along S is a distinguished subgroup of Gy

* Noether theorem tells us that the charges represents elements of the spacetime [O: O, ] = 10}
geometry — Non-commutativity of the corner metric components

* Finding the quantum representation of Gy is equivalent to quantizing geometry

— Understanding the quantum causal diamond



Symmetries and Gravity

* Given a region R with slice 2 the symmetry charges are supported on
codimension 2 corners 5= entangling sphere

.S
* The extended corner symmetry group Gy is the subgroup of Diff(M) which
and possesses non zero Noether charges in the presence of §, its with s
kinematical subgroup G¢ C G¢ preserves the region R.

e In metric gravity GS — (Diff(S) X SL(2,R)%) X R2S

W. Donnelly, L.F 2016
Group = Kinematical + dynamical L.F, Leigh, Ciambelli’ 21
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* The extended corner symmetry group Gy is the subgroup of Diff(M) which
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kinematical subgroup H¢ C G preserves the region R.

e In metric gravity GS — (Diff(S) X SL(2,R)%) X R2S

W. Donnelly, L.F 2016
Group = Kinematical + dynamical L.F, Leigh, Ciambelli’ 21

* Double Universality of CA?S for metric gravity!

-Same group for infinitesimal diamond or very large ones
-Same group for Einstein gravity or any other higher derivative formulation
of gravity no matter how many extra derivative

Wald, Speranza’l 7

* What changes is either the choice of representation or the canonical representation of the
symmetry generators: By Noether theorem symmetry generator are expressed in terms of

metric components pulled back to S 5



Symmetry on null surfaces

> Local gravitational symmetries are attached to codimension 2 corner: In
metric gravity this group is the extended corner symmetry group (Universal)

G, = (Diff(S) X SL(2,R)%) x RS

> When we study Horizon, asymptotic infinity or the nature of quantum radiation
one focuses our attention onto a specific null surface. In that case the subgroup
preserving the preserving the null structure ( Thermal Carrollian structure) is

Barnich-Trossaert’ |0,

. g Chandrasekar, Flanagan, Prabhu’ | 8
BMSW — (DIH(S) X Weyl) X IR LF, Oliveri, Pranzetti Speziale 21

§ =Ty, + Y204 + W (udy, — 10,) t= o)

> At infinity, same group, conservation law are associated with GBMS 7 _ lDAyA
2

Barnich Troesseart ’| | Campiglia, Ladha ’16
Compere, Fiorucci, Ruzziconi’ | 8



Quantum Corner symmetry
G = Diff(S) X SL(2,! )S Donnelly, Moosavian,

Speranza, LF’

* What are the reps! what are the Casimirs!?
* The little group is the group that preserves CsLiz,r), = det(q) >0

e The subgroup generated by \/5 is the local modular boost group
A

4G
* Representations are classified by representations of the area preserving
Diffeomorphism subgroup: Coadjoint orbits

. In gravity we have that for states representing minimal surfaces K =

* The outer curvature generator () form a representation of the area preserving
diffeomorphisms algebra

* The Casimirs are then given by

Co = Area
= ,/ V8" Cy = NUT charge
S (5 = Fluid enstrophy

— T



Quantum fluid

G is isomorphic to the symmetry groups of 2d hydrodynamics W. Donnelly,A. Speranza, FM
Moosavian, L.F 2020

Classification of quantum representation of corner group isomorphic
to the representation theory of

e Analogy: the area density \/5 plays the role of the fluid density p

The outer curvature €2 plays the role of the fluid vorticity w Arn0|d’66l;<{‘]4&fsc,:|le;, Ratiu’95
esin

 The quantum representations are classified by a choice of
area and vorticity densities (p, w) on S. isomorphic

* (p,w) can be related to labels of the coadjoint orbits (hence
representation) of the fluid group’ Gy

Classical fluid corresponds to a choice of density density measure p > 0 which is absolutely
continuous with respect to the Lebesgue measure

e Quantum fluid corresponds to a choice where both p and w are counting measures.

This gives a constituent picture to the fluid

: : : T LFGeiller, Wieland "22
e Area constituent in the continuum from quantization! et

|7



Dynamics along null surfaces )

* The gravitational evolution along null surfaces can be entirely formulated as N S
conservation laws for the corner charges — Quantization of the Einstein equation ¢

Three main results for dynamics along causal Horizons:
Carollian structure (£“, g ) such that £9g_, = 0

* The Gravitational dynamics projected on ./ can be recast as a set of Null Donnay, Marteau '19

: b __ b b b LF, Hopfmueller; | 9; Sheikh-Jabbari’20
conservation LaWS/Dde =0 N /! Ta — Tabﬂ T 7, Speranza, Flanagan, Chandrasekaran 2|
Carrollian connection Carrollian energy- Ashtekar, Khera, Kolanowski, Lewandowski 22
momentum tensor LF, P Jai-Akson 22

* This dynamics can be understood as the conservation of charges for a universal null surface
symmetry group BMSWV
 The dynamics can be understood in terms of a canonical structure associated with

I 1
O " = (—T“b5 b Ta&”“>€

e Conservation laws are the expression of diffeomorphism invariance

—  Quantum Raychauduri Ciambelli, Leigh, F 23



Quantum Raychauduri

. | Ciambelli, Leigh, F 23
* The symplectic structure on null surfaces contains 3 geometric elements:

Spin 0 pair: (€2, 1) where €2 = \/5 is the area form, and y = k + > (inaffinity +expansion)
Spin | pair: (7, £%) where n, = k, D _#" is the boost connection
Spin 2 pair: (g, 0%?) where g, = g,/ is the conformal metric and ¢, = %quab is the shear

1
@Can — 8]Z-G J <%6abéqab — ﬂéQ)Eﬂ/
N

 Spin 0 and spin | represents the quantum geometry degrees of freedom ( geometric backreaction),
while spin2 and matter represents the hard (EFT) degrees of freedom

1
* Raychaudhuri equation 0‘2,52 = pufd — £ (552 + SﬂGT‘%attef)

can be understood as a balance equation between a sum of stress tensors

T(O) n T(Z) 4 Tmatter — 0



Balance equation

* Raychaudhuri equation can be understood as a balance equation between a sum of stress tensors

C:=TY+ T 7m0 = ()

o (07Q — 10, Q) -1 matt 2
N 87G ‘" ' N 167[G0 Oab A = (0,9)
beta-gamma twisted CFT Spin2 CFT Matter CFT

. Given TU[f] = J (v, 6)TY(v, 6) they satisfy a Virasoro algebra above each point on the sphere
N

(TO[1, TV[g]} = 6'T[f¢ — gf] + O(G)

e Gravity manifest itself in the presence of a non-zero stress tensor for geometry itself (spin 0).
TV £ 0 is necessary to sustain the balance equation as 7%, TMa > ()

At the quantum level the UV divergences shows itself as the fact that the total central charge is oo

e Regulating UV divergences means allowing ¢, ..; to be finite



Quantum Time

» The spin 0 momenta represent a choice of dynamical time variable: (v, 6”) = (V(v, 6), 6), 0,V # 0
2V
Il/t —
0,V

T—

o Raychaudhuri can be solved non-perturbatively away from caustic 0, # 0as V = V(Q, 5)

Boost operator in areal
time

Q
0,V = epr' dQ'Q (6% + 8aGTHAY)  +—

o Using the dressing time one can construct gauge invariant observables § _, (v, 6?) = g, (V, 6)

o After resolution of the constraint the dressing time is a corner observable

At the quantum level quantum fluctuations of the time variables help resolve some of the UV

singularity: Edge mode = cross product that reduces type lll to type I A. Connes 1968-1970
Witten, Chandrasekaran, Longo 23
AKAT > hand AT > 0= AK < Speranza, Sorce, Jensen 23

E.Gesteau, L.F 23-24



Entropy

* We can now compute the generator of the local boost generator hinging at a cut V =0

|
o This canonical generator is K(o) := E(Q — V0,/£2)

2

O matt
dezV E_FTVV 6/,/20

e This suggests that K is the proper modular hamiltonian



Quantum Radiation S

* Quantum Radiation can be described as elementary transitions between Barrett

representation of G

* These transitions are controlled by the extended symmetry group CA}S

* They can be represented classically in terms of spacetimes carrying LF Pranzetti 21
Impulsive waves

* Impulsive waves are solution of EE which carries non trivial radiations but no energy-

momentum tensor along null sheets.

: : : R
» Obtained through simple cut and paste techniques Penrose 72 i

1o

NAE = AnB§(u — uy)
I

Barnich, Ruzziconi’ 21
* Representations R corresponds to coadjoint orbits of GBMS LF, Moosavian, Pranzetti ‘23

* At the quantum level we expect these transitions are intertwinners of the extended
group G A new picture of quantum dynamics.

» Asymptotic states form representation of G¢
23



Summary:

* The profound consequences of Noether theorem for gravitational theories leads to a
new picture of quantum geometry as a state of representation of the corner symmetry
group which capture the essence of subregions entanglement.

* |t encodes the non-commutativity of geometrical observables associated with subregions
representing the quantization of geometry.

* |t leads discretization of space from the representation of continuous non-commutative infinite
dimensional algebras represented as quantum fluid at the corner.

* Dynamics along null surfaces is encoded into Carrolian conservation laws for the
symmetry charges and activated at the quantum level by the representation of the
dynamical charges and transitions between corners

* These concepts can be extended to asymptotic Dynamics which connects to S-
matrix calculations and reveals a new tower of higher spin symmetry responsible
for all known soft theorems

24



Thank You !






Diffferent Corner symmetry

e For a different formulation of gravity we have L, = Ly + d¢ /-y LF, Geiller, Pranzetti 20

Qp = Qpy+dQppy

e Different formulation have different symmetry groups —» Inequivalent quantization

A . Q Perez, Engle, Noui ' |0
GS — (lef(S) D< KS) D< RZS Bodendorfer 'l 3
— I Perez, LF ‘|5
1948(0), 4cp(0) } = Y(€scqpp + )60, 6")
Einstein-Hilbert K¢ = SL(2,|R)§ ﬁ
Einstein-Cartan-Holst K¢ = SL(Z,C)ﬁ X SL(2,|R)‘|9| <«— Tangential metric g,p

Electric Flux

e In all cases we have that \/ Casimir,(Kg) o \/5 Area form! Loop gravity input

e SU(2)° is a subgroup of GS

27



Edge modes and symmetry

* Entangling corners carries the representation of a fundamental group of symmetry
the corner symmetry group Gg. The Tomita-Takesaki modular group which

W. Donnelly, LF 2016

represents boost hinging along S is a distinguished subgroup of Gy Speranza 2017
* In order to define Gravity in finite region we need a field that tells us where the Leigh, Ciambelli 202 |

corner is situated X : By — X - 2028
* This field, called the embedding field or edge mode field is part of the gravitational

phase space
* |t can be used to dress physical operators and allows us to define an extended

algebra of observables /" = oS v g

L L

o o ¢ = B(LZ(GS)) is the algebra of operators acting on functions on the corner

Symmetry group Connes 1973

Th : Venkatesa, Witten et al 2023
* The extended algebra of observable is the cross product algebra

. . Speranza et al. 2023

* |t carries a representation of the corner symmetry group LF E Gesteau 2022

* The full algebra can then be obtained by fusion of extended algebra
Ay = ﬂzL |X|GS ﬂzR

* This mechanism can be extended to more than one subregion 2 = U, 2., .The
observable algebra is then obtained from the gluing of many extended subalgebras









Charge and Flux

. : : - Cr Ashtekar Streubel '8|
Dynamical symmetries carry Flux [ fQ — 5Q £ 4+ A £ Wald, Zoupas’ 00
Barnich Troesseart ’ 10
e Local conservation Law Canonical variation = Noether + Flux Pasterski, Strominger, Zhib ’18
= Equation of motion ' O -adha, Campiglia |8
Q — Q —|— I L/f Pranzetti, Oliveri, Speziale,LF "2
£ =0, < 4 5o 7 Ciambelli, Leigh "2
Evolution = Rotation + dissipation Wieland’22

» The charges splits into kinematical charges . = 0 and dynamical charges.
* The kinematical charges are canonical bracket that form a quantizable algebra:

Corner symmetry group G .
[ch’ Q)(] - lQ[cf,)(]
* The Dynamical charges form an extended corner symmetry group (A}S also quantizable in a
extended phase space Ciambelli, Leigh "2
LF21

* Einstein’s equation are recasted as quasi-local conservation laws on causal diamond around the
entangling corner

31



Charge and Flux

. : : - 7 Ashtekar Streubel '8
Dynamical symmetries carry Flux Iéﬂ — 5Q§ -+ Jé Wald, Zoupas’ 00
Barnich Troesseart’ |0
Canonical variation = Noether + Flux Pasterski, Strominger, Zhib ’18

Ladha, Campiglia ’| 8
) I . —_— C ’ PIg
Local conservation Law: Flux balance 5KQC§ — Q[g Lﬂ] + Iff 4 Pranzetti, Oliveri, Speziale,LF 2|
7 Ciambelli, Leigh 21
Evolution = Rotation + dissipation Wieland’22

» The charges splits into kinematical charges . = 0 and dynamical charges.
* The kinematical charges are canonical bracket that form a quantizable algebra:

Corner symmetry group Gq [ ch 0]=i Q[cf ]
> =X A

* The Dynamical charges form an extended corner symmetry group (A}S also quantizable in a
extended phase space

* The Charges represents the hon-commutative geometry
—>» Non-commutativity of the corner metric components

* At the quantum level physical observables form representations of G¢ C Gy

— Quantising G¢, G¢ = Quantizing geometry.
32



W. Donnelly,A. Speranza, EM

Q uantum fluid Moosavian, L.F 2020

G is isomorphic to the symmetry groups of 2d hydrodynamics L andau: Arnold: Marsden. Ratiu

e Analogy: the area density \/5 plays the role of the fluid density p

The outer curvature plays the role of the fluid vorticity w

* This provides a constituent picture where M. Geiller D. Pranzetti. L F 2021
Fluid molecularization = Area constituent D = Z p,5(2)(0, ;)
Vortex quantization = momenta quantization - l

l

L TT—— -

e Each constituent carries a density, weight and spin (p;, A, s;)

P, = Z 5(2)(6, c)D, + (Alﬁf + SiGAB)aBé(Z)(G, 0;) | LEGeiller, Wieland "22
L.F’23

I

* Area constituent in the continuum from quantization!

» Einstein Cartan gravity with an Immirzi parameter implies that p;, = }/\/ji(jl- + 1). Wieland ‘19
Area gap in the continuum!

33



W. Donnelly,A. Speranza, EM

Q uantum fluid Moosavian, L.F 2020

Hg is isomorphic to the symmetry groups of 2d hydrodynamics Landau: Arnold: Marsden. Ratiu.

e Analogy: the area density \/5 plays the role of the fluid density p

The outer curvature plays the role of the fluid vorticity w

* This provides a constituent picture where M. Geiller D. Pranzetti. L F 2021
Fluid molecularization = Area constituent D = Z p,5(2)(0, ;)
Vortex quantization = momenta quantization - l

l

L — P

e Each constituent carries a density, weight and spin (p;, A, s;)

Py = Z 520, 0)Dy + (AS) + 5:€,°)0p6'7(0,06)  Geiller Wicland,
L.F 2022

I

* Area constituent in the continuum from quantization!

: . , , o W. Donnelly, A.Speranza,
* The area preserving diffeomorphisms arises as the large N limit of SUN)  £M Moosavian, LF 2022

—> Matrix model deformation of Gravity and its symmetry.
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