Non-perturbative Wavefunction of the Universe in Inflation with (Resonant) Features

Sébastien Renaux-Petel

CNRS - Institut d'Astrophysique de Paris

TUG meeting 2023, LPENS, October 12th 2023

Established by the European Commission

Work in progress

w. Paolo Creminelli, Giovanni Tambalo, Vicharit Yingcharoenrat

ICTP Trieste

ETH Zurich

IPMU Tokyo

Work in progress

w. Paolo Creminelli, Giovanni Tambalo, Vicharit Yingcharoenrat

ICTP Trieste

ETH Zurich

IPMU Tokyo

Outline

I. Motivations

II. How to go beyond perturbation theory

III. Wavefunction for resonant features

IV. Results and questions

I. Motivations

- Phenomenological
- Theoretical

Isn't inflation perturbative?!

Time

Planck satellite

$$|f_{\rm NL}^{\rm loc}| < 5 \quad |f_{\rm NL}^{\rm eq}| < 40$$

Primordial fluctuations:
Gaussian + small corrections
(at most 0.1%)

Simplest explanation: (very) weakly coupled theory

Tail of distribution

$$\mathcal{P}(\zeta) \sim \exp\left[-\frac{\zeta^2}{2P_{\zeta}} \left(1 + \frac{\langle \zeta\zeta\zeta\rangle}{P_{\zeta}^2} \zeta + \frac{\langle \zeta\zeta\zeta\zeta\rangle}{P_{\zeta}^3} \zeta^2 + \ldots\right)\right]$$

$$\frac{\langle \zeta \zeta \zeta \rangle}{P_{\zeta}^{2}} \zeta \sim f_{\rm NL} \zeta \qquad \frac{\langle \zeta \zeta \zeta \zeta \rangle}{P_{\zeta}^{3}} \zeta^{2} \sim g_{\rm NL} \zeta^{2}$$

Expansion parameter depends on size of ζ

Perturbation theory OK for correlation functions

primordial

density fluctuations

but

Non-perturbative method needed for the tail

Motivations

Black hole formation sensitive to $\zeta \sim 1$

Unexpected regimes? (later in the talk)

Surprise in the data on the tails?

One can compute the wavefunction of the universe!

Eternal inflation: can the tails be relevant?

II. How to go beyond perturbation theory

- Wavefunction approach
- Semi-classical method

Main idea

Since fluctuations are proportional to $\hbar^{1/2}$

Looking at unlikely events corresponds to the semi-classical limit $\hbar \to 0$

The tail of the distribution is amenable to a semiclassical calculation

The wavefunction

$$\Psi[\bar{\zeta}(\boldsymbol{x})] = \int_{\mathrm{BD}}^{\bar{\zeta}(\boldsymbol{x})} \mathcal{D}\zeta e^{iS[\zeta]/\hbar}$$

Transition amplitude, from Bunch-Davies vacuum to given configuration

$$\langle \zeta(\boldsymbol{x}_1) \dots \zeta(\boldsymbol{x}_n) \rangle = \int \mathcal{D}\zeta \, \zeta(\boldsymbol{x}_1) \dots \zeta(\boldsymbol{x}_n) |\Psi(\zeta)|^2$$

Correlators

Wavefunction

The perturbative wavefunction

$$\Psi[\bar{\zeta}(oldsymbol{x})] = \int_{\mathrm{BD}}^{ar{\zeta}(oldsymbol{x})} \mathcal{D}\zeta e^{iS[\zeta]/\hbar}$$

$$\Psi(\zeta) = \exp\left[\sum_{n\geq 2} \frac{1}{n!} \int \prod d\mathbf{k}_i \delta(\sum \mathbf{k}_i) \zeta_{\mathbf{k}_1} \dots \zeta_{\mathbf{k}_n} \psi_n(\mathbf{k}_i)\right]$$

Wavefunction coefficients

Feynmann-Witten diagrams with diagrammatic rules

The non-perturbative wavefunction

$$\Psi[\bar{\zeta}(\boldsymbol{x})] = \int_{\mathrm{BD}}^{\bar{\zeta}(\boldsymbol{x})} \mathcal{D}\zeta e^{iS[\zeta]/\hbar} \simeq e^{iS[\zeta_{\mathrm{cl}}]/\hbar}$$

 $\zeta_{\rm cl}$: solution to the classical (non-linear) equation of motion with prescribed boundary conditions (like instantons)

Resummation of all tree-level non-linearities with negligible loop effects

Some remarks

• Different from other non-perturbative approaches like stochastic inflation:

takes into account non-trivial quantum physics inside the Hubble radius

• Not one point pdf, full morphological information of density profile

Gaussian wavefunction

• For free theory, semi-classical result is exact, with classical solution

$$\zeta_{\rm cl}(\eta, \boldsymbol{x}) = \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \bar{\zeta}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \frac{(1 - ik\eta)e^{ik\eta}}{(1 - ik\eta_{\rm f})e^{ik\eta_{\rm f}}}$$

decays exponentially after $i\epsilon$ rotation

• Result:
$$iS = \frac{i}{2P_{\zeta}} \int d^3 \boldsymbol{x} \frac{1}{\eta_{\rm f}^2} \zeta_{\rm cl}(\eta_{\rm f}, \boldsymbol{x}) \zeta_{\rm cl}'(\eta_{\rm f}, \boldsymbol{x}) \simeq \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} \left(i\frac{k^2}{\eta_{\rm f}} - k^3\right) \frac{\bar{\zeta}(\boldsymbol{k})\bar{\zeta}(-\boldsymbol{k})}{2P_{\zeta}}$$

$$P_{\zeta} \equiv rac{H_{\star}^2}{2\epsilon_{\star}M_{\mathrm{Pl}}^2}$$

Pure phase:

does not affect probability

Scale-invariant power spectrum

III. Wavefunction for resonant features

- Full Nonlinear Action
- Resonant features
- Expression

Fully nonlinear action for fluctuations?

New non-perturbative expression

$$S = \int dt \, d^3x \, a^3 M_{\rm Pl}^2 \dot{H}(t + \pi) (\partial_{\mu} \pi)^2$$

Full nonlinear action valid in all models of canonical single-field inflation

Reformulation of EFT of inflation, valid in the decoupling limit $\quad \epsilon \ll 1$ and with manifest super-Hubble conservation of π

Boundary value
$$\bar{\zeta} = -H_{\star}\bar{\pi}$$

Notation $\zeta = -H_{\star}\pi$ in the following

Resonant features

(here in H(t)) Small but fast oscillations

Chen, Easther, Lim 08, Flauger, Pajer 2010, Leblond, Pajer 11, Behbahani, Dymarsky, Mirbabayi, Senatore 11...

$$V(\varphi) = V_{\rm sr}(\varphi) + \Lambda^4 \cos(\varphi/f)$$

$$\dot{H}(t) = \dot{H}_{\star} \left(1 - \tilde{b} \cos(\omega t + \delta) \right)$$

- $\tilde{b} \ll 1$ - Small amplitude
- Large frequency $\alpha = \frac{\omega}{H_{\star}} \gtrsim 1$

Resonance between:

background oscillations and quantum modes oscillations $e^{ik\eta}$

$$e^{i\omega t}$$

non-Gaussianities are enhanced with a peculiar shape

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle \propto \tilde{b} \alpha^{5/2} \sin \left(\alpha \log((k_1 + k_2 + k_3)/k_{\star}) \right)$$

Wavefunction for resonant features

 We work at first order in amplitude of the feature we can evaluate the action on the solution with no feature

$$S[\zeta = \zeta_0 + \tilde{b}\zeta_1] = S[\zeta_0] + 0 + \mathcal{O}(\tilde{b}^2)$$

- Subtraction of divergent unobservable part (cf free theory)
- Rotation to Euclidean time (everything analytic):

$$\Psi[\bar{\zeta}] = e^{-S_g} e^{-\tilde{b}\Delta S_{E,1}}$$

$$\Delta S_{\mathrm{E},1}[\bar{\zeta}] = \int_{-\infty}^{0} d\tau \int d^{3}x \, \frac{1}{2\tau^{2}P_{\zeta}} \left\{ \left[\zeta'^{2} + (\partial_{i}\zeta)^{2} \right] \cos\left(\alpha \left(\log(\tau/\eta_{\star}) + \zeta\right) - \tilde{\delta} - i\alpha\pi/2\right) \right\}$$

Explicit result.

Numerical integration or analytical results for $\alpha \gg 1$

$$-\left(\partial_{i}\bar{\zeta}\right)^{2}\cos\left(\alpha\left(\log(\tau/\eta_{\star})+\bar{\zeta}\right)-\tilde{\delta}-i\alpha\pi/2\right)\right\}$$

with
$$\zeta(\tau, \boldsymbol{x}) = \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \bar{\zeta}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} (1 - k\tau) e^{k\tau}$$

Actually, full wavefunction!

Our result: resummation of tree-level diagrams at order \tilde{b}

$$\frac{\bar{\zeta}}{\zeta}$$

$$+$$

$$\alpha^{\frac{1}{2}} \tilde{b} \bar{\zeta}^{2}$$

$$\frac{\zeta}{\zeta} \frac{\zeta}{\zeta}$$

$$\alpha^{\frac{1}{2}} \tilde{b} \zeta^{2} (\alpha^{2} \zeta)$$

$$\frac{\zeta \zeta \ldots \zeta}{\ldots \zeta}$$

$$\alpha^{\frac{1}{2}} \tilde{b} \zeta^{2} (\alpha^{2} \zeta)^{n-2}$$

Loop diagrams at order \tilde{b}

$$\bar{\zeta} \gtrsim \frac{1}{\alpha^2}$$

perturbation theory breaks down

$$\alpha^2 P_{\zeta} \ll 1$$

Computation of WFU also valid for typical fluctuations

IV. Results and questions

Some results

We choose a given spherically symmetric profile, and vary its overall amplitude

e.g.
$$\bar{\zeta}(r) = \bar{\zeta}e^{-(r/r_0)^2}$$

Asymmetry between minima and maxima, unexpected from perturbation theory

Exponential growth for $\bar{\zeta} \gtrsim 1/\alpha^2$

Some results

For large ζ , the growth saturates and one gets oscillations on the tail

Analytical understanding

for
$$\alpha \gg 1$$
 (saddle-point)

$$P_{\zeta}\Delta S_{\mathrm{E},1} \propto rac{e^{rac{\pilpha}{2}}}{lpha^{2}} \, e^{i\sigmalpha(ar{\zeta}-\log(\sqrt{|
abla^{2}ar{\zeta}|}))}$$

Some results

Exponential enhancement absent for local minimum

For large $\bar{\zeta}$, the growth saturates and one gets oscillations on the tail

Analytical understanding

for
$$\alpha \gg 1$$
 (saddle-point)

$$P_{\zeta}\Delta S_{\mathrm{E},1} \propto \frac{e^{\frac{\pi\alpha}{2}}}{\alpha^{2}} e^{i\sigma\alpha(\bar{\zeta}-\log(\sqrt{|\nabla^{2}\bar{\zeta}|}))}$$

Questions

• Is all this real or an artefact of working at $O(\tilde{b})$?

We think it is real, full numerics can tell: $e^{iS[\zeta_{\rm cl},b]}$

ullet Physical understanding of asymmetry and super-resonance $\,\sim e^{lpha}$

Analogy with simple quantum mechanical problem? in progress

Intriguing new regime

$$\alpha^2 P_{\zeta}^{1/2} \gtrsim 1 ?$$

 $lpha^2 P_{\zeta}^{1/2} \gtrsim 1$? Resummation is needed even for typical fluctuations

$$\omega > 4\pi f$$

Beyond regime of validity of EFT for scalar field?, with $\cos(\varphi/f)$

Fine actually:

$$\Lambda_{
m cutoff} \sim 4\pi f \log^{1/2}(1/\tilde{b})$$
 Hook, Rattazzi 2023

Negligible 3-, 4- pt function... but a lot of large n-point functions To study more!

Conclusion

- Generic method to compute the non-perturbative tail of WFU (sometimes full WFU)
- First analytical results of non-perturbative phenomena from inside-the-horizon interactions
- Simple expression for any small feature
- Typical fluctuations in non-perturbative regime?!
- Generalizations: DBI, eternal inflation, tensor modes
- Developments to relate to observations