

Stochastic inflation and applications to primordial black holes

Chiara Animali

Théorie, Univers et Gravitation

LPENS, París

12 October 2023

Primordial Black Holes

Primordial Black Holes

Black holes which could have formed in the early Universe through a non-stellar way Hawking [1971] : Gravitationally collapsed objects of very low mass Carr & Hawking [1974]: Black holes in the early Universe

Primordial Black Holes

Black holes which could have formed in the early Universe through a non-stellar way Hawking [1971] : Gravitationally collapsed objects of very low mass Carr & Hawking [1974]: Black holes in the early Universe

- They could solve several conundrums in astrophysics and cosmology
 - They could be the totality, or a fraction, of the Dark Matter
 - They may explain the existence of progenitors for the merging events observed by LIGO/VIRGO
- They could be the seeds of supermassive black holes in galactic nuclei
- They could generate cosmological structures

 $M_{\rm PBH}$ [g]

Primordial Black Holes : How?

BHs may be originated from peaks of the density perturbations generated in the early universe

Inflationary epoch

(reheating)

- Large fluctuations are needed to form PBHs They could backreact on the expansion dynamics
 - Backreaction can be incorporated in an effective (stochastic) theory

- Large fluctuations are needed to form PBHs They could backreact on the expansion dynamics Backreaction can be incorporated in an effective (stochastic) theory
- Stochastic inflation Splitting fields into UV and IR part: coarse-graining scale $k_{cg} = \sigma a H$

$$\phi(x) = \phi_{cg} + \int \frac{dk}{(2\pi)^{3/2}} W\left(\frac{k}{\sigma aH}\right) \left[\phi_k(N) e^{-i\vec{k}\cdot\vec{x}} \hat{a}_{\vec{k}} + h\right]$$

Quantum subhorizon fluctuations source the background

A. Starobinsky [1986] Stochastic de Sitter (inflationary) stage in the early universe

- Large fluctuations are needed to form PBHs They could backreact on the expansion dynamics Backreaction can be incorporated in an effective (stochastic) theory
- Stochastic inflation Splitting fields into UV and IR part: coarse-graining scale $k_{cg} = \sigma a H$

$$\phi(x) = \phi_{cg} + \int \frac{dk}{(2\pi)^{3/2}} W\left(\frac{k}{\sigma aH}\right) \left[\phi_k(N) e^{-i\vec{k}\cdot\vec{x}} \hat{a}_{\vec{k}} + h\right]$$

Quantum subhorizon fluctuations source the background

Dynamics at leading order in slow roll:

$$\frac{d}{dN}\phi_{cg} = \left[-\right]$$

A. Starobinsky [1986] Stochastic de Sitter (inflationary) stage in the early universe

How to reconstruct the statistics of ζ in presence of quantum diffusion?

How to reconstruct the statistics of ζ in presence of quantum diffusion?

δN formalism

$$\zeta(t, \mathbf{x}) = N(t, \mathbf{x}) - \overline{N}(t) \equiv \delta N$$

Lifshitz, Khalatnikov [1960] Starobinsky [1983] Wands, Malik, Lyth, Liddle [2000]

Quantum diffusion during inflation: properties of perturbations

Quantum diffusion during inflation: properties of perturbations

• Stochastic- δN formalism

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008] Vennin, Starobinsky [2015]

Number of *e*-folds is a stochastic variable \mathcal{N}

Statistics of ζ from the statistics of \mathscr{N}

 $\zeta_{cg}(\mathbf{x}) = \mathcal{N}(\mathbf{x}) - \langle \mathcal{N} \rangle$

Quantum diffusion during inflation: properties of perturbations

• Stochastic- δN formalism

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008] Vennin, Starobinsky [2015]

Number of *e*-folds is a stochastic variable \mathcal{N}

Statistics of ζ from the statistics of $\mathcal N$

$$\zeta_{cg}(\mathbf{x}) = \mathcal{N}(\mathbf{x}) - \langle \mathcal{N} \rangle$$

Distribution function for the duration of inflation (first passage time)

$$\frac{\partial}{\partial \mathcal{N}} P(\mathcal{N}, \phi) = \mathscr{L}_{FP}^{\dagger}(\phi) \cdot P(\mathcal{N}, \phi) \qquad \qquad \frac{1}{M_{Pl}^2} \mathscr{L}_{FP}^{\dagger}(\phi) = -\frac{\nu'(\phi)}{\nu(\phi)} \frac{\partial}{\partial \phi} + \nu(\phi) \frac{\partial^2}{\partial \phi^2} \qquad \qquad \nu = \frac{V}{24\pi^2 M_{Pl}^4}$$

• Tail of the PDF for ζ has an exponential fall-off behaviour: $P(\mathcal{N}) \propto e^{-\Lambda_0 \mathcal{N}}$

- Tail of the PDF for ζ has an exponential fall-off behaviour: $P(\mathcal{N}) \propto e^{-\Lambda_0 \mathcal{N}}$
- Characteristic function (includes all moments)

$$\chi(t,\phi) \equiv \langle e^{it\mathcal{N}} \rangle = \int_{-\infty}^{\infty} e^{it\mathcal{N}} P(\mathcal{N},\phi) \, d\mathcal{N} \qquad \longrightarrow \qquad P(\mathcal{N},\phi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-it\mathcal{N}} \chi(t,\phi) \, dt$$

- Tail of the PDF for ζ has an exponential fall-off behaviour: $P(\mathcal{N}) \propto e^{-\Lambda_0 \mathcal{N}}$
- Characteristic function (includes all moments)

$$\chi(t,\phi) \equiv \langle e^{it\mathcal{N}} \rangle = \int_{-\infty}^{\infty} e^{it\mathcal{N}} P(\mathcal{N},\phi) \, d\mathcal{N} \qquad \longrightarrow \qquad P(\mathcal{N},\phi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-it\mathcal{N}} \chi(t,\phi) \, dt$$

Useful trick: pole expansion

Ezquiaga, Garcia-Pattison, Vennin, /

$$\chi(t,\phi) = \sum_{n} \frac{a_n(\phi)}{\Lambda_n - it} + g(t,\phi)$$

$$P(\mathcal{N},\phi) = \sum_{n} a_{n}(\phi) e^{-\Lambda_{n} \mathcal{N}} \qquad 0 < \Lambda_{0} < \Lambda_{1} < \cdots \Lambda_{n}$$

[Ezquiaga, Garcia-Bellido, Vennin (2020)]

- Tail of the PDF for ζ has an exponential fall-off behaviour: $P(\mathcal{N}) \propto e^{-\Lambda_0 \mathcal{N}}$
- Characteristic function (includes all moments)

$$\chi(t,\phi) \equiv \langle e^{it\mathcal{N}} \rangle = \int_{-\infty}^{\infty} e^{it\mathcal{N}} P(\mathcal{N},\phi) \, d\mathcal{N} \qquad \longrightarrow \qquad P(\mathcal{N},\phi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-it\mathcal{N}} \chi(t,\phi) \, dt$$

Useful trick: pole expansion

$$\chi(t,\phi) = \sum_{n} \frac{a_n(\phi)}{\Lambda_n - it} + g(t,\phi)$$

$$P(\mathcal{N}, \phi) = \sum_{n} a_{n}(\phi) e^{-\Lambda_{n} \mathcal{N}} \qquad 0 < \Lambda_{0} < \Lambda_{1} < \cdots \Lambda_{n}$$

[Ezquiaga, Garcia-Bellido, Vennin (2020)]

This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the fNL expansion)

<u>C.A.</u>, V. Vennin [2022] "Primordial black holes from stochastic tunneling" JCAP 02(2023) 043

local minimum

7

False vacuum state

<u>C.A.</u>, V. Vennin [2022] "Primordial black holes from stochastic tunneling" JCAP 02(2023) 043

local minimum

7

- False vacuum state
- Local minima naturally appear in various contexts: high energy constructions (supersymmetry, supergravity)

 - etc.

<u>C.A.</u>, V. Vennin [2022] "Primordial black holes from stochastic tunneling" JCAP 02(2023) 043

- breaking of flat-inflection point condition through radiative corrections

local minimum

- False vacuum state
- Local minima naturally appear in various contexts: high energy constructions (supersymmetry, supergravity)

 - etc.
- 1) Large classical velocity How to escape?

<u>C.A.</u>, V. Vennin [2022] "Primordial black holes from stochastic tunneling" JCAP 02(2023) 043

- breaking of flat-inflection point condition through radiative corrections

2) "Stochastic tunnelling": quantum fluctuations jiggle the inflaton and push it outwards

local minimum

- False vacuum state
- Local minima naturally appear in various contexts: high energy constructions (supersymmetry, supergravity)

 - etc.

<u>C.A.</u>, V. Vennin [2022] "Primordial black holes from stochastic tunneling" JCAP 02(2023) 043

- breaking of flat-inflection point condition through radiative corrections

2) "Stochastic tunnelling": quantum fluctuations jiggle the inflaton and push it outwards

local minimum

- False vacuum state
- Local minima naturally appear in various contexts: high energy constructions (supersymmetry, supergravity)

 - etc.

<u>C.A.</u>, V. Vennin [2022] "Primordial black holes from stochastic tunneling" JCAP 02(2023) 043

- breaking of flat-inflection point condition through radiative corrections

Linear model

$$v(\phi) = v_0 \left(1 - \alpha \frac{\phi}{\Delta \phi} \right)$$

Linear model

$$v(\phi) = v_0 \left(1 - \alpha \frac{\phi}{\Delta \phi} \right)$$

Quadratic model ("two-parabola approximation")

$$v(\phi) = v_0 \begin{cases} 1 + \alpha \left[\left(\frac{\phi}{\Delta \phi} - 1 \right)^2 - 1 \right] & \text{if} \quad 0 \le \phi \le \Delta \phi \\ 1 - \alpha \left[\left(\frac{\phi}{\Delta \phi} + 1 \right)^2 - 1 \right] & \text{if} \quad -\Delta \phi \le \phi \le 0 \end{cases}$$

Linear model

$$v(\phi) = v_0 \left(1 - \alpha \frac{\phi}{\Delta \phi} \right)$$

Quadratic model ("two-parabola approximation")

$$v(\phi) = v_0 \begin{cases} 1 + \alpha \left[\left(\frac{\phi}{\Delta \phi} - 1 \right)^2 - 1 \right] & \text{if} \quad 0 \le \phi \le \Delta \phi \\ 1 - \alpha \left[\left(\frac{\phi}{\Delta \phi} + 1 \right)^2 - 1 \right] & \text{if} \quad -\Delta \phi \le \phi \le \phi \end{cases}$$

$$\mu^2 = \frac{(2\Delta\phi)^2}{v_0 M_{Pl}^2} \propto \frac{M_{Pl}^2 \Delta\phi^2}{V}$$
$$a = \frac{\alpha}{v_0} \propto \frac{M_{Pl}^4 \Delta V}{V^2}$$

Linear model

$$v(\phi) = v_0 \left(1 - \alpha \frac{\phi}{\Delta \phi} \right)$$

Quadratic model ("two-parabola approximation")

$$v(\phi) = v_0 \begin{cases} 1 + \alpha \left[\left(\frac{\phi}{\Delta \phi} - 1 \right)^2 - 1 \right] & \text{if} \quad 0 \le \phi \le \Delta \phi \\ 1 - \alpha \left[\left(\frac{\phi}{\Delta \phi} + 1 \right)^2 - 1 \right] & \text{if} \quad -\Delta \phi \le \phi \le \phi \end{cases}$$

$$\mu^{2} = \frac{(2\Delta\phi)^{2}}{v_{0}M_{Pl}^{2}} \propto \frac{M_{Pl}^{2}\Delta\phi^{2}}{V}$$
Quantum diffusion in highlighted regions, potential gradient

$$a = \frac{\alpha}{v_{0}} \propto \frac{M_{Pl}^{4}\Delta V}{V^{2}}$$
Slow roll preserved: $\epsilon = \frac{M_{Pl}^{2}}{2} \left(\frac{v'}{v}\right)^{2} \ll 1, |\eta| = \left|M_{Pl}^{2}\frac{v''}{v}\right| \ll 1$
 $\langle \mathcal{N} \rangle$ smaller than ~ 50 : $\Delta v = v(-\Delta\phi) - v(\Delta\phi) \ll v_{0}$

t elsewhere

shallow-well limit

$$\Lambda_n^{shallow} = \frac{1}{\mu^2} \left[\pi^2 \left(n + \frac{1}{2} \right)^2 - 2a + \mathcal{O}(a^2) \right]$$

$$P^{shallow}(\mathcal{N}, \phi = \Delta \phi) \simeq \frac{\pi}{\mu^2} (1 - a) e^{-\left(\frac{\pi^2}{4} - 2a\right)\frac{\mathcal{N}}{\mu^2}}$$

$$\sim e^{2a\mathcal{N}/\mu^2} \simeq e^{a\mathcal{N}/\langle \mathcal{N} \rangle} \text{ enhancement on the talarge for } \mathcal{N} \sim 1/a \sigma \text{-away from the mean}$$

ment on the tail:

shallow-well limit

$$\Lambda_n^{shallow} = \frac{1}{\mu^2} \left[\pi^2 \left(n + \frac{1}{2} \right)^2 - 2a + \mathcal{O}(a^2) \right]$$

$$P^{shallow}(\mathcal{N}, \phi = \Delta \phi) \simeq \frac{\pi}{\mu^2} (1 - a) e^{-\left(\frac{\pi^2}{4} - 2a\right)\frac{\mathcal{N}}{\mu^2}}$$

$$\sim e^{2a\mathcal{N}/\mu^2} \simeq e^{a\mathcal{N}/\langle \mathcal{N} \rangle} \text{ enhancem}$$
large for $\mathcal{N} \sim 1/a \sigma$ -away from

deep-well limit

$$\begin{split} \Lambda_{0}^{deep} &= \frac{4 \, a^{2} e^{-2a}}{\mu^{2}} \left[1 + 2 \, (2a-1) e^{-2a} + \mathcal{O}(e^{-4a}) \right] \\ \Lambda_{n+1}^{deep} &= \frac{a^{2}}{\mu^{2}} + \frac{\pi^{2}}{\mu^{2}} (n+1)^{2} \left[1 + \frac{2}{a} + \mathcal{O}\left(\frac{1}{a^{2}}\right) \right] \\ P^{deep}(\mathcal{N}, \phi = \Delta \phi) &\simeq 4 \frac{a^{2}}{\mu^{2}} e^{-2a} e^{-\frac{4a^{2}}{\mu^{2}} e^{-2a} \mathcal{N}} \end{split}$$
"super-exponential" dependence on *a*

ment on the tail: om the mean

shallow-well limit

$$\Lambda_n^{shallow} = \frac{1}{\mu^2} \left[\pi^2 \left(n + \frac{1}{2} \right)^2 - 2a + \mathcal{O}(a^2) \right]$$

$$P^{shallow}(\mathcal{N}, \phi = \Delta \phi) \simeq \frac{\pi}{\mu^2} (1 - a) e^{-\left(\frac{\pi^2}{4} - 2a\right)\frac{\mathcal{N}}{\mu^2}}$$

$$\sim e^{2a\mathcal{N}/\mu^2} \simeq e^{a\mathcal{N}/\langle \mathcal{N} \rangle} \text{ enhancem}$$
large for $\mathcal{N} \sim 1/a \sigma$ -away from

deep-well limit

$$\begin{split} \Lambda_{0}^{deep} &= \frac{4 \, a^{2} e^{-2a}}{\mu^{2}} \left[1 + 2 \, (2a-1) e^{-2a} + \mathcal{O}(e^{-4a}) \right] \\ \Lambda_{n+1}^{deep} &= \frac{a^{2}}{\mu^{2}} + \frac{\pi^{2}}{\mu^{2}} (n+1)^{2} \left[1 + \frac{2}{a} + \mathcal{O}\left(\frac{1}{a^{2}}\right) \right] \\ P^{deep}(\mathcal{N}, \phi = \Delta \phi) &\simeq 4 \frac{a^{2}}{\mu^{2}} e^{-2a} e^{-\frac{4a^{2}}{\mu^{2}} e^{-2a} \mathcal{N}} \end{split}$$
"super-exponential" dependence on *a*

False vacuum: quadratic model

shallow-well limit

$$\Lambda_{n}^{shallow} = \frac{\pi^{2}}{\mu^{2}} \left[\left(n + \frac{1}{2} \right)^{2} + \frac{4 a^{2}}{3\pi^{2}} - (-1)^{n} \frac{8a}{\pi^{3} (2n+1)} \right] + e^{-\frac{\pi^{2}}{2}} P^{shallow}(\mathcal{N}, \phi = \Delta \phi) \simeq \frac{\pi}{\mu^{2}} (1-a) e^{-\left(\frac{\pi^{2}}{4} - \frac{8}{\pi}a\right)\frac{\mathcal{N}}{\mu^{2}}}$$

Typical abundance: Press-Schechter estimate

$$\beta \sim \int_{\zeta_c}^{\infty} P(\zeta) \ d\zeta \quad \longrightarrow \quad \beta \sim \int_{\langle \mathcal{N} \rangle + \zeta_c}^{\infty} P(\mathcal{N}, \phi = \Delta \phi) \ d\mathcal{N}$$

Typical abundance: Press-Schechter estimate

$$\beta \sim \int_{\zeta_c}^{\infty} P(\zeta) \ d\zeta \quad \longrightarrow \quad \beta \sim \int_{\langle \mathcal{N} \rangle + \zeta_c}^{\infty} P(\mathcal{N}, \phi = \Delta \phi) \ d\mathcal{N}$$

$$\beta = \sum_{n} \frac{a_{n}(\Delta \phi)}{\Lambda_{n}} e^{-\Lambda_{n} \left[\zeta_{c} + \langle \mathcal{N} \rangle (\Delta \phi)\right]}$$
$$\langle \mathcal{N} \rangle(\phi) = \sum_{n} \frac{a_{n}(\phi)}{\Lambda_{n}}$$

Typical abundance: Press-Schechter estimate

$$\beta \sim \int_{\zeta_c}^{\infty} P(\zeta) \ d\zeta \quad \longrightarrow \quad \beta \sim \int_{\langle \mathcal{N} \rangle + \zeta_c}^{\infty} P(\mathcal{N}, \phi = \Delta \phi) \ d\mathcal{N}$$

$$\beta^{lin,shallow} \simeq \frac{4}{\pi} \left[1 + \left(\frac{8}{\pi^2} - \frac{\pi^2}{12} \right) a \right] e^{-\frac{\pi^2}{8} - \left(\frac{\pi^4}{4} - 2a \right) \frac{\zeta_c}{\mu^2}}$$

$$\beta^{quad,shallow} \simeq \frac{4}{\pi} \left[1 + \left(\frac{32}{\pi^3} + \frac{4}{\pi} - \frac{5\pi^2}{48} - 1 \right) a \right] e^{-\frac{\pi^2}{8} - \left(\frac{\pi^4}{4} - \frac{\pi^2}{48} - \frac{\pi^2}{48} - 1 \right)}$$

What the slow-roll assumption implies?

quadratic model: $\mu \gg \sqrt{a} \longrightarrow$ exponential factor negligible \longrightarrow flat-well limit applies where slow roll satisfied linear model: $\mu \gg a \sqrt{v_0}$ \longrightarrow exponential factor large even at small *a* values

Typical abundance: Press-Schechter estimate

$$\beta \sim \int_{\zeta_c}^{\infty} P(\zeta) \ d\zeta \quad \longrightarrow \quad \beta \sim \int_{\langle \mathcal{N} \rangle + \zeta_c}^{\infty} P(\mathcal{N}, \phi = \Delta \phi) \ d\mathcal{N}$$

$$\beta^{lin,shallow} \simeq \frac{4}{\pi} \left[1 + \left(\frac{8}{\pi^2} - \frac{\pi^2}{12} \right) a \right] e^{-\frac{\pi^2}{8} - \left(\frac{\pi^4}{4} - 2a \right) \frac{\zeta_c}{\mu^2}}$$
$$\beta^{quad,shallow} \simeq \frac{4}{\pi} \left[1 + \left(\frac{32}{\pi^3} + \frac{4}{\pi} - \frac{5\pi^2}{48} - 1 \right) a \right] e^{-\frac{\pi^2}{8} - \left(\frac{\pi^4}{4} - \frac{\pi^2}{48} - \frac{\pi^2}{48} - 1 \right)} \right]$$

What the slow-roll assumption implies?

quadratic model: $\mu \gg \sqrt{a} \longrightarrow$ exponential factor negligible \longrightarrow flat-well limit applies where slow roll satisfied linear model: $\mu \gg a \sqrt{v_0}$ — exponential factor large even at small *a* values $\beta^{lin,deep} \simeq e^{-1} e^{-(2 a e^{-a})^2 \frac{\zeta_c}{\mu^2}}$ super-exponential dependence on *a* PBHs are overproduced when $a \gtrsim 8$

Quadratic model

Quadratic false vacuum

Linear model

Additional regimes:

If $\mu^2 \ll a \ll 1$ (μ small): large deviations from flat-well, still shallow-well domain; non-trivial imprint of the false-vacuum profile

If $a \sim \mathcal{O}(1)$: large PBH production

<u>C.A.</u>, V. Vennin In preparation

• As it stands, the stochastic formalism delivers the one-point statistics of the curvature perturbation when coarse-grained at the Hubble scale at the end of inflation $R = (\sigma H_{end})^{-1}$

- As it stands, the stochastic formalism delivers the one-point statistics of the curvature perturbation when coarse-grained at the Hubble scale at the end of inflation $R = (\sigma H_{end})^{-1}$
- Studying the formation of a given structure of mass M usually requires to coarse grain the perturbation field over a scale determined by M (which roughly corresponds to the Hubble scale at the time when the Hubble mass equals M). Y.Tada, V. Vennin

JCAP02(2022)021

- As it stands, the stochastic formalism delivers the one-point statistics of the curvature perturbation when coarse-grained at the Hubble scale at the end of inflation $R = (\sigma H_{end})^{-1}$
- Studying the formation of a given structure of mass M usually requires to coarse grain the perturbation field

$$\mathscr{B}_{\mathbf{x}_0}(R;\rho_{\mathrm{f}}) = \{\mathbf{x} \mid r_{\mathrm{ph}}(\mathbf{x},\mathbf{x}_0;\rho_{\mathrm{f}}) \le R\}$$

$$\zeta_{R}(\mathbf{x}_{0}) = \frac{1}{V[\mathscr{B}_{\mathbf{x}_{0}}(R;\rho_{\mathrm{f}})]} \int_{\rho=\rho_{\mathrm{f}}} \mathrm{d}\mathbf{x}\,\zeta(\mathbf{x})\,W\left[\frac{r_{\mathrm{ph}}(\mathbf{x},\mathbf{x}_{0};\rho_{\mathrm{f}})}{R}\right]$$

$$\frac{4}{3}\pi R^3 = \frac{1}{\sigma^3 H^3(\mathbf{\Phi}_*)} \int_{\mathscr{B}} e^{3\mathscr{N}(\mathbf{x})} \,\mathrm{d}\mathbf{x}$$

over a scale determined by M (which roughly corresponds to the Hubble scale at the time when the Hubble mass equals M). Y.Tada, V. Vennin

JCAP02(2022)021

Coarse graining in stochastic inflation $\frac{4}{3}\pi R^{3} = \frac{1}{\sigma^{3}H^{3}(\mathbf{\Phi}_{*})} \int_{\mathscr{B}} e^{3\mathscr{N}(\mathbf{x})} d\mathbf{x}$

• Approximating the emerging volume: $R \gg (\sigma H_{end})^{-1}$

$$e^{3\mathcal{N}(\mathbf{x})} \to \langle e^{3\mathcal{N}} \rangle (\mathbf{\Phi}_*) = \int P_{\mathrm{FPT},\mathbf{\Phi}_*}(\mathcal{N}) e^{3\mathcal{N}} \mathrm{d}\mathcal{N}$$

$$R^{3} = \frac{1}{\sigma^{3} H^{3}(\mathbf{\Phi}_{*})} \langle e^{3\mathcal{N}} \rangle (\mathbf{\Phi}_{*})$$

Coarse graining in stochastic inflation $\frac{4}{3}\pi R^{3} = \frac{1}{\sigma^{3}H^{3}(\mathbf{\Phi}_{*})} \int_{\mathscr{B}} e^{3\mathscr{N}(\mathbf{x})} d\mathbf{x}$

• Approximating the emerging volume: $R \gg (\sigma H_{end})^{-1}$

$$e^{3\mathcal{N}(\mathbf{x})} \to \langle e^{3\mathcal{N}} \rangle(\mathbf{\Phi}_*) = \int P_{\mathrm{FPT},\mathbf{\Phi}_*}(\mathcal{N})e^{3\mathcal{N}}\mathrm{d}\mathcal{N}$$

$$R^{3} = \frac{1}{\sigma^{3} H^{3}(\mathbf{\Phi}_{*})} \langle e^{3\mathcal{N}} \rangle (\mathbf{\Phi}_{*})$$

$$\begin{aligned} \zeta_R &= \int_{\mathscr{B}} \left[\mathscr{N}_{\mathbf{\Phi}_0} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) \right] \mathrm{d}\mathbf{x} = \int_{\mathscr{B}} \left[\mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} (\mathbf{x}_0) + \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) \right] \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \int_{\mathscr{B}} \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \int_{\mathscr{B}} \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \int_{\mathscr{B}} \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \int_{\mathscr{B}} \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathcal{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \int_{\mathscr{B}} \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0 \to \mathbf{\Phi}_* - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*$$

Coarse graining in stochastic inflation $\frac{4}{3}\pi R^{3} = \frac{1}{\sigma^{3}H^{3}(\mathbf{\Phi}_{*})} \int_{\mathscr{B}} e^{3\mathscr{N}(\mathbf{x})} d\mathbf{x}$

• Approximating the emerging volume: $R \gg (\sigma H_{end})^{-1}$

$$e^{3\mathcal{N}(\mathbf{x})} \to \langle e^{3\mathcal{N}} \rangle(\mathbf{\Phi}_*) = \int P_{\mathrm{FPT},\mathbf{\Phi}_*}(\mathcal{N})e^{3\mathcal{N}}\mathrm{d}\mathcal{N}$$

$$R^{3} = \frac{1}{\sigma^{3} H^{3}(\mathbf{\Phi}_{*})} \langle e^{3\mathcal{N}} \rangle (\mathbf{\Phi}_{*})$$

$$\begin{aligned} \zeta_R &= \int_{\mathscr{B}} \left[\mathscr{N}_{\mathbf{\Phi}_0} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) \right] \mathrm{d}\mathbf{x} = \int_{\mathscr{B}} \left[\mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} (\mathbf{x}_0) + \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) \right] \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \int_{\mathscr{B}} \mathscr{N}_{\mathbf{\Phi}_*} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} \\ &= \mathscr{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathscr{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathfrak{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathfrak{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathfrak{B}} (\mathbf{x}) \mathrm{d}\mathbf{x} = \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle (\mathbf{\Phi}_0) + \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \langle \mathscr{N} \rangle - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi$$

$$P(\zeta_R) = \int \mathrm{d} \mathbf{\Phi}_* P(\mathbf{\Phi}_*) P_{\mathrm{FPT}, \mathbf{\Phi}_0 \to \mathbf{\Phi}_*} \left[\zeta_R + \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) - \langle \mathcal{N} \rangle (\mathbf{\Phi}_*) \right]$$

<u>C.A.</u>, V. Vennin In preparation

Information on the relative distance of patches encoded in the time they become statistically independent

<u>C.A.</u>, V. Vennin In preparation

- Information on the relative distance of patches encoded in the time they become statistically independent
- Stochastic inflation formalism also allows to describe the spatial correlation between durations of inflation at different points

K.Ando, V. Vennin JCAP 04 (2021) 057

- Information on the relative distance of patches encoded in the time they become statistically independent
- Stochastic inflation formalism also allows to describe the spatial correlation between durations of inflation at different points

K.Ando, V. Vennin JCAP 04 (2021) 057

 $= \rho_{\rm f}$

physical scale

- Information on the relative distance of patches encoded in the time they become statistically independent
- Stochastic inflation formalism also allows to describe the spatial correlation between durations of inflation at different points

$$\begin{aligned} \zeta_{R_1} &= \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} + \mathcal{N}_{\mathbf{\Phi}_* \to \mathbf{\Phi}_1} - \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) + \langle \mathcal{N} \rangle (\mathbf{\Phi}_1) \\ \zeta_{R_2} &= \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} + \mathcal{N}_{\mathbf{\Phi}_* \to \mathbf{\Phi}_2} - \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) + \langle \mathcal{N} \rangle (\mathbf{\Phi}_2) \end{aligned}$$

K.Ando, V. Vennin JCAP 04 (2021) 057

 $= \rho_{\rm f}$

physical scale

- Information on the relative distance of patches encoded in the time they become statistically independent
- Stochastic inflation formalism also allows to describe the spatial correlation between durations of inflation at different points

$$\begin{aligned} \zeta_{R_1} &= \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} + \mathcal{N}_{\mathbf{\Phi}_* \to \mathbf{\Phi}_1} - \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) + \langle \mathcal{N} \rangle (\mathbf{\Phi}_1) \\ \zeta_{R_2} &= \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} + \mathcal{N}_{\mathbf{\Phi}_* \to \mathbf{\Phi}_2} - \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) + \langle \mathcal{N} \rangle (\mathbf{\Phi}_2) \end{aligned}$$

$$P(\zeta_{R_1}, \zeta_{R_2}) = \int d\Phi_* d\Phi_1 d\Phi_2 d\mathcal{N}_{\Phi_0 \to \Phi_*} P(\Phi_*) P(\Phi_1 | \Phi_*) P(\Phi_2 | \Phi_2 | \Phi_2)$$

$$\times P_{\text{FPT}, \Phi_0 \to \Phi_*} (\mathcal{N}_{\Phi_0 \to \Phi_*})$$

$$\times P_{\text{FPT}, \Phi_* \to \Phi_1} \left[\zeta_{R_1} - \mathcal{N}_{\Phi_0 \to \Phi_*} + \langle \mathcal{N} \rangle (\Phi_0) - \langle \mathcal{N} \rangle (\Phi_0) \right]$$

$$\times P_{\text{FPT}, \Phi_* \to \Phi_2} \left[\zeta_{R_2} - \mathcal{N}_{\Phi_0 \to \Phi_*} + \langle \mathcal{N} \rangle (\Phi_0) - \langle \mathcal{N} \rangle (\Phi_0) \right]$$

K.Ando, V. Vennin JCAP 04 (2021) 057

 $= \rho_{\rm f}$

physical scale

• Values of fields at the parent patches are deterministic quantities: $P(\Phi_*), P(\Phi_1 | \Phi_*), P(\Phi_2 | \Phi_*)$ are Dirac distributions

Scale-field values relation:

$$R^{3} = \frac{1}{\sigma^{3} H^{3}(\mathbf{\Phi}_{*})} \langle e^{3\mathcal{N}} \rangle (\mathbf{\Phi}_{*})$$

• Values of fields at the parent patches are deterministic quantities: $P(\Phi_*), P(\Phi_1 | \Phi_*), P(\Phi_2 | \Phi_*)$ are Dirac distributions

Scale-field values relation:

$$R^{3} = \frac{1}{\sigma^{3} H^{3}(\mathbf{\Phi}_{*})} \langle e^{3\mathcal{N}} \rangle (\mathbf{\Phi}_{*})$$

$$P(\zeta_R) = P_{\text{FPT}, \Phi_0 \to \Phi_*} \left[\zeta_R + \langle \mathcal{N} \rangle (\Phi_0) - \langle \mathcal{N} \rangle (\Phi_*) \right]$$

$$P(\zeta_{R_1}, \zeta_{R_2}) = \int d\mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} P_{\text{FPT}, \mathbf{\Phi}_0 \to \mathbf{\Phi}_*} (\mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*}) P_{\text{FPT}, \mathbf{\Phi}_* \to \mathbf{\Phi}_1} \left[\zeta_{R_1} - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} + \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) - \langle \mathcal{N} \rangle (\mathbf{\Phi}_1) \right] \\ \times P_{\text{FPT}, \mathbf{\Phi}_* \to \mathbf{\Phi}_2} \left[\zeta_{R_2} - \mathcal{N}_{\mathbf{\Phi}_0 \to \mathbf{\Phi}_*} + \langle \mathcal{N} \rangle (\mathbf{\Phi}_0) - \langle \mathcal{N} \rangle (\mathbf{\Phi}_2) \right]$$

• Values of fields at the parent patches are deterministic quantities: $P(\Phi_*), P(\Phi_1 | \Phi_*), P(\Phi_2 | \Phi_*)$ are Dirac distributions

$$\frac{1}{(-x_*)^2} \vartheta_2' \left[\frac{\pi}{2}, e^{-\frac{\pi^2}{\mu^2(1-x_*)^2} \left[\zeta_R + \frac{\mu^2}{2} (1-x_*)^2 \right]} \right] \qquad x_* = \phi_* / \Delta \phi = \phi_*$$

$$\frac{\pi^{3}}{6(1-x_{*})^{2}(1-x_{1})^{2}(1-x_{2})^{2}} \int d\mathcal{N}_{x_{0}\to x_{*}} \vartheta_{2}' \left[\frac{\pi}{2}, e^{-\frac{\pi^{2}}{\mu^{2}(1-x_{*})^{2}}\mathcal{N}_{x_{0}\to x_{*}}}\right]$$

$$\frac{2}{2^{-x_{1}}} \left[\zeta_{R_{1}} - \mathcal{N}_{x_{0}\to x_{*}} + \frac{\mu^{2}}{2}(1-x_{1})^{2}\right] \vartheta_{2}' \left[\frac{\pi}{2}x_{*}, e^{-\frac{\pi^{2}}{\mu^{2}(1-x_{2})^{2}}} \left[\zeta_{R_{2}} - \mathcal{N}_{x_{0}\to x_{*}} + \frac{\mu^{2}}{2}(1-x_{2})^{2}\right]\right]$$

Linear potential positive slope

 $P\left(\zeta_{R_1},\zeta_{R_2}
ight)$

 -10^{-1}

 -10^{-2}

 $L_{10^{-3}}$

Two-point correlation function of overdensities

$$1 + \xi(r) = \frac{p\left(\zeta(0) > \zeta_c, \zeta(r) > \zeta_c\right)}{p^2\left(\zeta(0) > \zeta_c\right)} \equiv \frac{P_2}{P_1^2}$$

 $\xi(r) \equiv \xi_{\text{PBH}}(r) \equiv \xi_{\text{red}}(r)$ for $r \gtrsim CR$

clustered vs non-clustered spatial distribution

Two-point correlation function of overdensities

$$1 + \xi(r) = \frac{p\left(\zeta(0) > \zeta_c, \zeta(r) > \zeta_c\right)}{p^2\left(\zeta(0) > \zeta_c\right)} \equiv \frac{P_2}{P_1^2}$$

 $\xi(r) \equiv \xi_{\text{PBH}}(r) \equiv \xi_{\text{red}}(r)$ for $r \gtrsim CR$

If ζ is a gaussian field: Poissonian distribution Y. Ali-Hamoud [2018], PRL 121,081304

clustered vs non-clustered spatial distribution

Two-point correlation function of overdensities

$$1 + \xi(r) = \frac{p\left(\zeta(0) > \zeta_c, \zeta(r) > \zeta_c\right)}{p^2\left(\zeta(0) > \zeta_c\right)} \equiv \frac{P_2}{P_1^2}$$

 $\xi(r) \equiv \xi_{\text{PBH}}(r) \equiv \xi_{\text{red}}(r)$ for $r \gtrsim CR$

- If ζ is a gaussian field: Poissonian distribution Y. Ali-Hamoud [2018], PRL 121,081304
- Small perturbative non gaussianities: generation of little amount of clustering at formation Franciolini, Kehagias, Matarrese, Riotto [2018], JCAP 03016

clustered vs non-clustered spatial distribution

T. Suyama, S. Yokoyama [2019], PTEP, 103E02

Two-point correlation function of overdensities

$$1 + \xi(r) = \frac{p\left(\zeta(0) > \zeta_c, \zeta(r) > \zeta_c\right)}{p^2\left(\zeta(0) > \zeta_c\right)} \equiv \frac{P_2}{P_1^2}$$

 $\xi(r) \equiv \xi_{\text{PBH}}(r) \equiv \xi_{\text{red}}(r)$ for $r \gtrsim CR$

- If ζ is a gaussian field: Poissonian distribution Y. Ali-Hamoud [2018], PRL 121,081304
- Small perturbative non gaussianities: generation of little amount of clustering at formation Franciolini, Kehagias, Matarrese, Riotto [2018], JCAP 03016
- Non perturbative non gaussianities?

$$P_1 = \int_{\zeta_c} d\zeta P(\zeta) \qquad P_2 = \int_{\zeta_c} d\zeta_1 d\zeta_2 P(\zeta_1, \zeta_2)$$

clustered vs non-clustered spatial distribution

T. Suyama, S. Yokoyama [2019], PTEP, 103E02

<u>C.A.</u>, V. Vennin In preparation

In summary

PBHs are a useful probe of inflation beyond tested regimes

- PBHs may be produced by large fluctuations during inflation: quantum diffusion cannot be neglected; it can be incorporated by the stochastic δN formalism: non gaussian tails
- Do non-perturbative non gaussianities also affect the spatial distribution of PBHs?

We can extend the stochastic delta N formalism to arbitrary coarse graining scales, and to multiple point statistics

Many thanks for the attention!

chiara.animali@phys.ens.fr

Inflation
High energy phase of accelerated expansion of spacetime

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a^{2}(t)d\vec{x}^{2} \qquad \dot{a}, \ddot{a} > 0$$

 $(10~{\rm MeV})^4 < \rho < (10^{16}\,{\rm GeV})^4$

High energy phase of accelerated expansion of spacetime

e
$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) d\vec{x}^2$$
 $\dot{a}, \ddot{a} > 0$
 $(10 \text{ MeV})^4 < \rho < (10^{16} \text{ GeV})^4$

24

High energy phase of accelerated expansion of spacetime

e
$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) d\vec{x}^2$$
 $\dot{a}, \ddot{a} > 0$
 $(10 \text{ MeV})^4 < \rho < (10^{16} \text{ GeV})^4$

24

Simplest realisation: slow-roll inflation

scalar field ϕ (inflaton) slowly rolling towards the minimum of its potential

$$S_{\phi} = \int d^4x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{16 \pi G} \left(\frac{V_{,\phi}}{V}\right)^2$$
$$\eta = \frac{\dot{\epsilon}}{H\epsilon} = \frac{1}{8 \pi G} \left(\frac{V_{\phi\phi}}{V}\right)$$
$$\{\epsilon, |\eta|\} \ll 1$$

Simplest realisation: slow-roll inflation

scalar field ϕ (inflaton) slowly rolling towards the minimum of its potential

$$S_{\phi} = \int d^4x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{16 \pi G} \left(\frac{V_{,\phi}}{V}\right)^2$$
$$\eta = \frac{\dot{\epsilon}}{H\epsilon} = \frac{1}{8 \pi G} \left(\frac{V_{\phi\phi}}{V}\right)$$
$$\{\epsilon, |\eta|\} \ll 1$$

Simplest realisation: slow-roll inflation

scalar field ϕ (inflaton) slowly rolling towards the minimum of its potential

$$S_{\phi} = \int d^4x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

 $\epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{16 \,\pi \,G}$

 $V_{,\phi}$

 $V_{\phi\phi}$

Simplest realisation: slow-roll inflation

scalar field ϕ (inflaton) slowly rolling towards the minimum of its potential

$$S_{\phi} = \int d^4x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

 $\epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{16 \pi G} \left(\frac{V_{,\phi}}{V} \right)$

Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass Carr & Hawking [1974]: Black holes in the early Universe

Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass Carr & Hawking [1974]: Black holes in the early Universe

Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass Carr & Hawking [1974]: Black holes in the early Universe

LIGO SCIENTIFIC, VIRGO collaboration [2016]: Observation of gravitational waves from a binary black hole merger

S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli, A. G. Riess [2016]: Did LIGO detect dark matter?

Primordial black holes: observational constraints

Depends on the mass at which PBHs form

 $10^{9}g < M_{PBH} < 10^{16}g \longrightarrow \text{from } \beta < 10^{-24} \text{ to } \beta < 10^{-17}$ $10^{16}g < M_{PBH} < 10^{50}g \longrightarrow \text{from } \beta < 10^{-11} \text{ to } \beta < 10^{-5}$

 $M_{PBH} < 10^9 g$ Evaporate before BBN: no direct imprint no constraints

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021] *Constraints on Primordial Black Holes* 17 PBH Hawking evaporation on Big Bang Nucleosynthesis and on the extragalactic photon background

Gravitational and astrophysical effects

Primordial black holes: observational constraints

 $10^9 g < M_{PBH} < 10^{16} g \longrightarrow \text{from } \beta < 10^{-24} \text{ to } \beta < 10^{-17}$ PBH Hawking evaporation on Big Bang Nucleosynthesis and on the extragalactic photon background

False vacuum: preserving slow roll Slow roll requires: $|\ddot{\phi}| \ll 3H|\dot{\phi}|, |V_{,\phi}|$

$$\ddot{\phi} + 3 H(\phi, \dot{\phi}) \dot{\phi} + V_{,\phi} = 0 \qquad H^2(\phi, \dot{\phi}) = \frac{1}{3M_{Pl}^2} \left(V(\phi) + \frac{\dot{\phi}^2}{2} \right)$$

Linearised Klein-Gordon equation

$$\begin{split} \dot{\phi} &= A \exp\left[-\frac{3}{2}\left(1 + \sqrt{1 - \frac{4m^2}{9H_0^2}}\right)H_0t\right] + B \exp\left[-\frac{3}{2}\left(-1 - \sqrt{1 - \frac{4m^2}{9H_0^2}}\right)H_0t\right] \end{split}$$

 $m \gg 3H_0/2$: damped oscillations, friction term $3H\dot{\phi}$ subdominant: far from slow-roll regime

$$m \ll 3H_0/2 \qquad \phi \simeq A \exp\left(-3H_0t\right) + B \exp\left(-\frac{1}{3}\frac{m^2}{H_0^2}H_0t\right) \simeq B \exp\left(-\frac{m^2t}{3H_0}\right)$$

$$3H\dot{\phi} \simeq -m^2\phi = -V_{,\phi}(\phi) \qquad \qquad \ddot{\phi} \simeq \frac{m^4}{9H_0^2}\phi = \frac{m^2}{9H_0^2}V_{,\phi} \ll V_{,\phi}(\phi)$$

What happens if $|V_{,\phi}| = 0$?

 (ϕ)

slow-roll regime: acceleration term subdominant (m^2/H_0^2 - suppressed)

- $\langle \mathcal{N} \rangle$ features quadratic dependence on μ and exponential dependence on a
- μ constrained from below by slow-roll conditions

a not much larger than 1

- $\langle \mathcal{N} \rangle$ features quadratic dependence on μ and exponential dependence on a
- μ constrained from below by slow-roll conditions

a not much larger than 1

- $\langle \mathcal{N} \rangle$ features quadratic dependence on μ and exponential dependence on a
- μ constrained from below by slow-roll conditions

a not much larger than 1

δN formalism

FLRW metric: $ds^2 = -dt^2 + a^2(t) \delta_{ij} dx^i dx^j$

deviations from homogeneity and isotropy: $ds^2 =$

local scale factor: $\tilde{a}(t, \vec{x}) = a(t) e^{\zeta(t, \vec{x})}$

expansion from flat slice at time t_{in} to a slice of uniform energy density:

$$N(t, \vec{x}) = \log\left[\frac{\tilde{a}(t, \vec{x})}{a(t_{in})}\right] \qquad \qquad \zeta(t, \vec{x}) = N(t, \vec{x}) - N_0(t) \equiv \delta N \qquad \qquad N_0(t) = \log\left[\frac{a(t)}{a(t_{in})}\right]$$

$$= -dt^{2} + a^{2}(t) e^{2\zeta(t, \vec{x})} \gamma_{ij} \qquad t-\text{slices of uniform energy de} x-worldlines comoving}$$

Stochastic- δN formalism

Phase space field vector:
$$\Phi = (\phi_1, \pi_1, \dots \phi_n, \pi_n)$$

$$\Phi_{cg} = \frac{1}{(2\pi)^{3/2}} \int_{k < k_\sigma} d^3 k \Phi_k e^{-ik\vec{x}}$$

$$\frac{d\Phi_{cg}}{dN} = F(\Phi_{cg}) + G(\Phi_{cg}) \cdot \xi \qquad \langle \xi_i(\vec{x}_i, N_i) \, \xi_i(\vec{x}_j, N_j) \rangle = \delta_{ij} \, \delta(N_i - N_j) \qquad (G^2)_{ij} = \frac{d\log k_\sigma}{dN} \mathscr{P}_{\Phi_i, \Phi_j} \left[k_\sigma(N), N \right]$$

$$\delta N_{cg}(\vec{x}) = \mathcal{N}(\vec{x}) - \langle \mathcal{N} \rangle = \zeta_{cg}(\vec{x}) = \frac{1}{(2\pi)^{3/2}} \int_{k_{in}}^{k_{end}} d\vec{k} \,\zeta_{\vec{k}} \,e^{i\vec{k}}$$

Curvature perturbation coarse grained between: the scale that crosses the Hubble radius at initial time (k_{in}) and the scale that crosses the Hubble radius at final time k_{end}

 $\vec{x} \cdot \vec{x}$

First passage time distribution

$$\mathscr{L}_{FP}^{\dagger}(\Phi) = F_{i}(\Phi)\frac{\partial}{\partial\Phi_{i}} + \alpha G_{il}(\Phi)\frac{\partial G_{lj}(\Phi)}{\partial\Phi_{l}}\frac{\partial}{\partial\Phi_{i}} + \frac{1}{2}G_{il}(\Phi)G_{jl}(\Phi)\frac{\partial}{\partial\Phi_{l}}\frac{\partial}{\partial\Phi_{i}} + \frac{1}{2}G_{il}(\Phi)G_{jl}(\Phi)\frac{\partial}{\partial\Phi_{i}}\frac{\partial}{$$

$$d\Phi f_1(\Phi) \Big[\mathscr{L}_{FP}(\Phi) \cdot f_2(\Phi) \Big] = \int d\Phi \Big[\mathscr{L}_{FP}^{\dagger}(\Phi) \cdot f_1(\Phi) \Big] f_2(\Phi)$$

Boundary conditions $\partial \Omega = \partial \Omega_{-} \cup \partial \Omega_{+}$

 $\partial \Omega_{-}$: all moments of the FPT vanish on $\partial \Omega_{-}$ (absorbing boundary)

Sometimes additional conditions required on $\partial \Omega_+$: absorbing or reflective boundary (gradients of moments projected onto the orthogonal direction to the tangent surface of $\partial \Omega_+$ vanish)

hierarchy of coupled differential equations: \mathscr{D}

 $\mathscr{L}_{FP}^{\dagger}(\Phi^{in}) \cdot \langle \mathscr{N}^n \rangle(\Phi^{in}) = -n \langle \mathscr{N}^{n-1} \rangle(\Phi^{in})$

Fokker-Planck equation

Evolution given by the Langevin equation: $\Phi(N + \delta N)$

Where to evaluate *F* and *G*? At $\Phi(N)$ or at $\Phi(N + \delta N)$?

$$\Phi_{\alpha}(N) = (1 - \alpha)\Phi(N) + \alpha\Phi(N + \delta N) \qquad 0 \le \alpha$$

$$\Phi(N+\delta N) = \Phi(N) + F[\Phi_{\alpha}(N)]\delta N + G[\Phi_{\alpha}(N)] \cdot \int_{N}^{N+\delta N} d\tilde{N}$$

Fokker-Planck equation:
$$\frac{\partial}{\partial N} P(\Phi, N | \Phi^{in}, N_{in}) = \mathscr{L}_{FP}(\Phi) P(\Phi, N | \Phi^{in}, N_{in})$$
$$\mathscr{L}_{FP}(\Phi) = -\frac{\partial}{\partial \Phi_i} \left[F_i(\Phi) + \alpha G_{lj}(\Phi) \frac{\partial G_{ij}(\Phi)}{\partial \Phi_l} \right] + \frac{1}{2} \frac{\partial^2}{\partial \Phi_i \Phi_j} G_{il}(\Phi) G_{jl}(\Phi)$$

$$\mathbf{N} = \Phi(N) + F(\Phi)\delta N + G(\Phi) \cdot \int_{N}^{N+\delta N} d\tilde{N}\,\xi(\tilde{N})$$

