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Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass  

Carr & Hawking [1974]: Black holes in the early Universe  



Primordial Black Holes 

- They may explain the existence of progenitors for the  

  merging events observed by LIGO/VIRGO  

- They could generate cosmological structures

- They could be the seeds of supermassive black holes in galactic nuclei

They could solve several conundrums in astrophysics and cosmology

- They could be the totality, or a fraction, of the Dark Matter

P. Villanueva-Domingo, O. Mena, S. Palomares-Ruiz [2021] 
A brief review on primordial black holes as dark matter  
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Primordial Black Holes : How?

PBHs may be originated from peaks of the density perturbations generated in the early universe  

ζ
̂ζ ⃗k

δ

(aH)−1

λPBH

λCMB

comoving scales

timeInflationary epoch Inflation end 
(reheating)

Hot Big Bang

radiation era matter era

PBH
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δρ
ρ
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∼ ζ > ζc ∼ 1

2



Primordial Black Holes and Quantum Diffusion

3



Primordial Black Holes and Quantum Diffusion

Large fluctuations are needed to form PBHs

They could backreact on the expansion dynamics

Backreaction can be incorporated in an effective (stochastic) theory

3



Primordial Black Holes and Quantum Diffusion

Large fluctuations are needed to form PBHs

They could backreact on the expansion dynamics

Backreaction can be incorporated in an effective (stochastic) theory

Stochastic inflation A. Starobinsky [1986]  Stochastic de Sitter ( inflationary) stage in the early universe

Splitting fields into UV and IR part: coarse-graining scale  kcg = σ a H

ϕ(x) = ϕcg + ∫
dk

(2π)3/2
W ( k

σaH ) [ϕk(N) e−i ⃗k ⋅ ⃗x ̂a ⃗k + h . c . ]
(σaH)−1

super-σH

sub-σH

k−1

N = log aQuantum subhorizon fluctuations source the background
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Large fluctuations are needed to form PBHs

They could backreact on the expansion dynamics

Backreaction can be incorporated in an effective (stochastic) theory

d
dN

ϕcg = −
V,ϕ(ϕcg)
3H2(ϕcg)

+
H(ϕcg)

2π
ξ(N)Dynamics at leading order in slow roll:

ϕ

V(ϕ) classical drift

quantum diffusion

Stochastic inflation A. Starobinsky [1986]  Stochastic de Sitter ( inflationary) stage in the early universe

Splitting fields into UV and IR part: coarse-graining scale  kcg = σ a H

ϕ(x) = ϕcg + ∫
dk

(2π)3/2
W ( k

σaH ) [ϕk(N) e−i ⃗k ⋅ ⃗x ̂a ⃗k + h . c . ]
(σaH)−1

super-σH

sub-σH

k−1

N = log aQuantum subhorizon fluctuations source the background

3



Primordial Black Holes and Quantum Diffusion

4



Primordial Black Holes and Quantum Diffusion

How to reconstruct the statistics of  in presence of quantum diffusion? ζ

4



Primordial Black Holes and Quantum Diffusion

How to reconstruct the statistics of  in presence of quantum diffusion? ζ

4

 formalismδN

tin

tfin

ψ = 0

δρ = 0

flat 

flat 

ψ = 0

N̄(t)

δN(x, t)

N(x, t)
ζ(t, x) = N(t, x) − N̄(t) ≡ δN

Lifshitz, Khalatnikov [1960]

Starobinsky [1983]

Wands, Malik, Lyth, Liddle [2000]
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Quantum diffusion during inflation: properties of perturbations
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Stochastic-  formalismδN

Number of -folds is a stochastic variable e 𝒩

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]

Vennin, Starobinsky [2015]

Statistics of  from the statistics of ζ 𝒩

ζcg(x) = 𝒩(x) − ⟨𝒩⟩

ϕ

N𝒩1 𝒩2

ϕend

Quantum diffusion during inflation: properties of perturbations
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Distribution function for the duration of inflation ( first passage time )

∂
∂𝒩

P(𝒩, ϕ) = ℒ†
FP(ϕ) ⋅ P(𝒩, ϕ)

1
M2

Pl
ℒ†

FP(ϕ) = −
v′ (ϕ)
v(ϕ)

∂
∂ϕ

+ v(ϕ)
∂2

∂ϕ2
v =

V
24π2M4

Pl

Stochastic-  formalismδN

Number of -folds is a stochastic variable e 𝒩

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]

Vennin, Starobinsky [2015]

Statistics of  from the statistics of ζ 𝒩

ζcg(x) = 𝒩(x) − ⟨𝒩⟩

ϕ

N𝒩1 𝒩2

ϕend

Quantum diffusion during inflation: properties of perturbations
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Pattison, Vennin, Assadullahi, Wands [2017]

Useful trick: pole expansion
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This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the fNL expansion) !
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False vacuum: simple toy models

a =
α
v0

∝
M4

Pl ΔV
V2

μ2 =
(2 Δϕ)2

v0 M2
Pl

∝
M2

Pl Δϕ2

V

Quantum diffusion in highlighted regions, potential gradient elsewhere

Slow roll preserved: , ϵ =
M2

Pl

2 ( v′ 

v )
2

≪ 1 |η | = M2
Pl

v′ ′ 

v
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 smaller than : ⟨𝒩⟩ ∼ 50 Δv = v(−Δϕ) − v(Δϕ) ≪ v0

v(ϕ) = v0 (1 − α
ϕ

Δϕ )

Linear model

quantum well

v(ϕ) = v0

1 + α [( ϕ
Δϕ − 1)

2
− 1] if 0 ≤ ϕ ≤ Δϕ

1 − α [( ϕ
Δϕ + 1)

2
− 1] if − Δϕ ≤ ϕ ≤ 0

Quadratic model ( “two-parabola approximation”)

quantum well

8



False vacuum: linear model

9



False vacuum: linear model

  enhancement on the tail: 
large for   -away from the mean 

∼ e2a𝒩/μ2 ≃ ea𝒩/⟨𝒩⟩

𝒩 ∼ 1/a σ

Pshallow(𝒩, ϕ = Δϕ) ≃
π
μ2

(1 − a) e−( π2
4 − 2a) 𝒩

μ2

Λshallow
n =

1
μ2 [π2 (n +

1
2 )

2

− 2a + 𝒪(a2)]
shallow-well limit  
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False vacuum: implications for Primordial Black Holes

Typical abundance: Press-Schechter estimate 

β ∼ ∫
∞

ζc

P(ζ) dζ ζc ∼ 1β ∼ ∫
∞

⟨𝒩⟩ +ζc

P(𝒩, ϕ = Δϕ) d𝒩
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exponential enhancement
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False vacuum: implications for Primordial Black Holes
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As it stands, the stochastic formalism delivers the one-point statistics of the curvature perturbation 

when coarse-grained at the Hubble scale at the end of inflation R = (σHend)−1

ℬx0
(R; ρf) = {x |rph(x, x0; ρf) ≤ R}

ζR(x0) =
1

V[ℬx0
(R; ρf)] ∫ρ=ρf

dx ζ(x) W [
rph(x, x0 ; ρf)

R ]

4
3

π R3 =
1

σ3H3(Φ*) ∫ℬ
e3𝒩(x) dx

ℬx0
(R; ρf)

ρ = ρf

Φ0 primeval patch

parent patch

R
Φ*

Robs

physical  
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N
x0

𝒫0

𝒫*[σH(Φ*)]−1

[σH(Φ*)]−1
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Y.Tada, V. Vennin  
JCAP02(2022)021 
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Single clock models
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In summary

PBHs may be produced by large fluctuations during inflation: quantum diffusion cannot be neglected;   
it can be incorporated by the stochastic  formalism: non gaussian tailsδN

We can extend the stochastic delta N formalism to arbitrary coarse graining scales, and to multiple point statistics

Do non-perturbative non gaussianities also affect the spatial distribution of PBHs?

PBHs are a useful probe of inflation beyond tested regimes



Many thanks for the attention!
chiara.animali@phys.ens.fr

mailto:chiara.animali@phys.ens.fr
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Sϕ = ∫ d4x −g ( 1
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gμν ∂μϕ∂νϕ − V(ϕ))
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Primordial Black Holes

Hawking [1971] : Gravitationally collapsed objects of very low mass  

Carr & Hawking [1974]: Black holes in the early Universe  

Black holes which could have formed in the early Universe through a non-stellar way

S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud,  
M. Kamionkowski, E. D. Kovetz, A. Raccanelli, A. G. Riess [2016]: 

Did LIGO detect dark matter? 
   

LIGO SCIENTIFIC, VIRGO collaboration [2016]: 
 Observation of gravitational waves from a binary black hole  

 merger  



Primordial black holes: observational constraints
Depends on the mass at which PBHs form

109g < MPBH < 1016g from  to β < 10−24 β < 10−17 PBH Hawking evaporation on Big Bang Nucleosynthesis  
and on the extragalactic photon background

1016g < MPBH < 1050g from  to β < 10−11 β < 10−5

MPBH < 109g Evaporate before BBN: no direct imprint  
no constraints 

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021] 
Constraints on Primordial Black Holes

Gravitational and astrophysical effects 
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False vacuum: preserving slow roll

Slow roll requires: | ··ϕ | ≪ 3H | ·ϕ | , |V,ϕ | What happens if  ?|V,ϕ | = 0

··ϕ + 3 H(ϕ, ·ϕ) ·ϕ + V,ϕ = 0 H2(ϕ, ·ϕ) =
1

3M2
Pl (V(ϕ) +

·ϕ2

2 )
ϕ

·ϕ

minimum  (ϕ = 0, ·ϕ = 0)
V(ϕ) ≃ V0 + m2ϕ2/2H2

0 =
V0

3 M2
Pl

Linearised Klein-Gordon equation

ϕ = A exp −
3
2

1 + 1 −
4 m2

9 H2
0

H0 t + B exp −
3
2

−1 − 1 −
4 m2

9 H2
0

H0 t

m ≫ 3H0/2 : damped oscillations, friction term  subdominant: far from slow-roll regime3H ·ϕ

3H ·ϕ ≃ − m2ϕ = − V,ϕ(ϕ) ··ϕ ≃
m4

9 H2
0

ϕ =
m2

9 H2
0

V,ϕ ≪ V,ϕ(ϕ)

··ϕ + 3H0
·ϕ + m2ϕ = 0

m ≪ 3H0/2 ϕ ≃ A exp (− 3H0t) + B exp (−
1
3

m2

H2
0

H0t) ≃ B exp (−
m2t
3H0 )

slow-roll regime: acceleration term subdominant  
 (  - suppressed) m2/H2

0



False vacuum: parameter space

30



False vacuum: parameter space

 features quadratic dependence on  and exponential dependence on  ⟨𝒩⟩ μ a

  constrained from below by slow-roll conditionsμ

  not much larger than a 1

30



False vacuum: parameter space

 features quadratic dependence on  and exponential dependence on  ⟨𝒩⟩ μ a

  constrained from below by slow-roll conditionsμ

  not much larger than a 1

10°2 10°1 100 101

a
10°7

10°5

10°3

10°1

101

µ

≤ = 0.1

hN i = 60
10°11

10°7

10°3

101

105

109

hN i(a, µ)
Linear model a ≤ 10

ϵ ≪ 1 ⇒ α ≪
Δϕ
MPl

Two regimes: “shallow well” ( )  
                            

a ≲ 1

“deep well” (  )a ≳ 1
30



False vacuum: parameter space

10°2 10°1 100

a

100

101

µ

|¥| = 0.1

hN i = 60
100

101

102

hN i(a, µ)Quadratic model a ≤ 1

ϵ ≪ 1 ⇒ α ≪
Δϕ
MPl

, |η | ≪ 1 ⇒ α ≪ ( Δϕ
MPl )

2

Δϕ ≪ MPl ⇒ |η | ≫ ϵ

Only a  “shallow-well” regime 

 features quadratic dependence on  and exponential dependence on  ⟨𝒩⟩ μ a

  constrained from below by slow-roll conditionsμ

  not much larger than a 1

10°2 10°1 100 101

a
10°7

10°5

10°3

10°1

101

µ

≤ = 0.1

hN i = 60
10°11

10°7

10°3

101

105

109

hN i(a, µ)
Linear model a ≤ 10

ϵ ≪ 1 ⇒ α ≪
Δϕ
MPl

Two regimes: “shallow well” ( )  
                            

a ≲ 1

“deep well” (  )a ≳ 1
30



 formalismδN

ds2 = − dt2 + a2(t) δij dxi dxj
FLRW metric:

deviations from homogeneity and isotropy: ds2 = − dt2 + a2(t) e2ζ(t, ⃗x ) γij slices of uniform energy density 
worldlines comoving

t−
x−

ã(t, ⃗x ) = a(t) eζ(t, ⃗x )local scale factor: 

expansion from flat slice at time  to a slice of uniform energy density: tin

N(t, ⃗x ) = log [ ã(t, ⃗x )
a(tin) ] ζ(t, ⃗x ) = N(t, ⃗x ) − N0(t) ≡ δN N0(t) = log [ a(t)

a(tin) ]



Stochastic-  formalismδN

Phase space field vector: Φ = (ϕ1, π1, ⋯ϕn, πn)

Φcg =
1

(2π)3/2 ∫k<kσ

d3kΦke−ik ⃗x

dΦcg

dN
= F(Φcg) + G(Φcg) ⋅ ξ ⟨ξi( ⃗x i, Ni) ξi( ⃗x j, Nj)⟩ = δij δ(Ni − Nj) (G2)ij =

d log kσ

dN
𝒫Φi,Φj [kσ(N), N]

δNcg( ⃗x ) = 𝒩( ⃗x ) − ⟨𝒩⟩ = ζcg( ⃗x ) =
1

(2π)3/2 ∫
kend

kin

d ⃗k ζ ⃗k ei ⃗k ⋅ ⃗x

Curvature perturbation coarse grained between: 
 the scale that crosses the Hubble radius at initial time ( ) and the scale that crosses the Hubble radius at final time kin kend



First passage time distribution

ℒ†
FP(Φ) = Fi(Φ)

∂
∂Φi

+ αGil(Φ)
∂Glj(Φ)

∂Φl

∂
∂Φi

+
1
2

Gil(Φ)Gjl(Φ)
∂2

∂ΦiΦj

∂
∂𝒩

P(𝒩, Φ) = ℒ†
FP(Φ) ⋅ P(𝒩, Φ)

Boundary conditions ∂Ω = ∂Ω− ∪ ∂Ω+

 : all moments of the FPT vanish on  (absorbing boundary) 

 Sometimes additional conditions required on : absorbing or reflective boundary  
(gradients of moments projected onto the orthogonal direction to the tangent surface of  vanish)  

∂Ω− ∂Ω−

∂Ω+
∂Ω+

∫ dΦ f1(Φ)[ℒFP(Φ) ⋅ f2(Φ)] = ∫ dΦ [ℒ†
FP(Φ) ⋅ f1(Φ)] f2(Φ)

first passage time problem 

inflationary domain
Φin 𝒩

𝒩
𝒩

end of inflation

∂Ω−

∂Ω+

ℒ†
FP(Φin) ⋅ ⟨𝒩n⟩(Φin) = − n⟨𝒩n−1⟩(Φin)hierarchy of coupled differential equations:



Φ(N + δN) = Φ(N) + F(Φ)δN + G(Φ) ⋅ ∫
N+δN

N
dÑ ξ(Ñ)

Where to evaluate  and ? At  or at ?F G Φ(N) Φ(N + δN)

Φα(N) = (1 − α)Φ(N) + αΦ(N + δN) 0 ≤ α ≤ 1

Φ(N + δN) = Φ(N) + F[Φα(N)]δN + G[Φα(N)] ⋅ ∫
N+δN

N
dÑ ξ(Ñ)

Itô prescription:  

Stratonovitch prescription:   

α = 0

α =
1
2

Fokker-Planck equation

∂
∂N

P(Φ, N |Φin, Nin) = ℒFP(Φ)P(Φ, N |Φin, Nin)

ℒFP(Φ) = −
∂

∂Φi [Fi(Φ) + αGlj(Φ)
∂Gij(Φ)

∂Φl ] +
1
2

∂2

∂ΦiΦj
Gil(Φ)Gjl(Φ)

Evolution given by the Langevin equation:

Fokker-Planck equation:


