

Stellar Dynamics in Galactic Nuclei

Jean-Baptiste Fouvry

in collaboration with K. Tep, J. Giral Martinez, N. Magnan C. Pichon, P.-H. Chavanis, W. Dehnen, S. Tremaine, B. Bar-Or

> TUG meeting, ENS Paris October 2023

Stellar Dynamics in Galactic Nuclei

and constraining IMBHs around SgrA*

Jean-Baptiste Fouvry

in collaboration with K. Tep, J. Giral Martinez, N. Magnan C. Pichon, P.-H. Chavanis, W. Dehnen, S. Tremaine, B. Bar-Or

> TUG meeting, ENS Paris October 2023

SgrA*, our Galactic Centre

SgrA*, our Galactic Centre

Zoom (x10,000,000)

What is the diet of **supermassive black holes**?

Extremely dense environment

Behaves like a gas of stars

VLT observations

Numerical simulations

A simple dynamics?

The central BH is **supermassive**

Keck observations

Numerical simulations

Like the Earth around the Sun, stars follow Keplerian orbits

Quasi-circular orbits

Shape of the orbits

Very eccentric orbits

Keplerian orbits

The BH dominates the stars' dynamics

VLT observations

Typical orbit

What is an orbit?

Describing an **orbit**

What is the dynamics of **Keplerian orbits**?

Gravity Interferometer – VLTI – Chili

S2's observation

Classical (adaptative) telescope

Interferometric telescope

Pericentre passage

S2's observations (Gravity)

Black hole's shadow

An inner IMBH hard to reconcile with S2's orbit

Pericentre precession

Origins of the **precession**:

+ Relativistic effects from the BH+ Perturbations from other stars

~30,000 years for S2

Orbits **precess** in their planes

Orbits also change in orientations

Stellar orientations

After a full precession, ellipses become annuli

Stellar dynamics

SgrA* is 10 Gyr orld. We can wait longer

Stellar energy

Orbital distortions sourced by instantaneous kicks and deflections

Deflections

Stellar energy

Deflections drive a slow change in the Keplerian energy

Deflections allow the star to get even closer to the central BH

The neighborhood of the BH

Tidal disruption events

J. Guillochon

Stars get **disrupted** by the BH's force field

Stellar winds

N. Luetzgendorf

Gas is **striped** from stars close to the BH

Even closer to the BH

What does a **compact object** feel close to the BH?

Extreme mass ratio inspirals

The emission of gravitational waves leads to an unavoidable infall

1. Dynamical time Fast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

1. Dynamical time Fast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

Resonant coupling on precessions

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \eta(e, t)$$

2

4

A wealth of dynamical processes

An extremely hierarchical system

Scalar Resonant Relaxation

The (resonant) dynamics of **eccentricities**

Scalar Resonant Relaxation

$$k \,\Omega_{\rm p}(a,h) = k' \,\Omega_{\rm p}(a',h')$$

Balescu-Lenard equation

Non-local resonances

The diffusion coefficients in eccentricity

Non-local resonances $\delta_{\rm D}[k \,\Omega_{\rm p}(a,h) - k' \,\Omega_{\rm p}(a',h')]$

Non-local resonances $\delta_{\rm D}[k \,\Omega_{\rm p}(a,h) - k' \,\Omega_{\rm p}(a',h')]$

The diffusion coefficients in eccentricity

SRR around SgrA*

Constraining IMBHs from SRR

2-population model (stars+IMBHs)

IMBHs population hard to reconcile with the eccentricity distribution

Stellar Dynamics in Galactic Nuclei

Vector Resonant Relaxation

The coherent dynamics of **orientations**

Stellar orientations

Orbits are in **all directions**

How do stars change of **orientations**?

Stellar orientations

After a full precession, ellipses become annuli

Orbital orientations

One orientation becomes a single point on the **unit sphere**

Vector Resonant Relaxation

This is an intrinsically turbulent dynamics

Typical evolution of an orientation

Stellar orientations follow a correlated random walk

Self-consistency requirement

Vector Resonant Relaxation can affect the disc-stars

How long should these stars stay ``**neighbors**''? Are they **young enough**?

Vector Resonant Relaxation can randomize disc stars

$$\frac{\mathrm{d}\hat{\mathbf{L}}_i}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}_i, t)$$

+ Evolution sourced by a **shared**, **spatially-extended** and **time-correlated** noise

$$\left\langle \eta(a_i, \hat{\mathbf{L}}_i, t) \, \eta(a_j, \hat{\mathbf{L}}_j, t') \right\rangle$$

= $C(a_i, a_j, \hat{\mathbf{L}}_i \cdot \hat{\mathbf{L}}_j, t - t')$

- + Two joint sources of **separation**
 - Parametric separation

$$a_i \neq a_j$$

- Angular separation

$$\hat{\mathbf{L}}_i \neq \hat{\mathbf{L}}_j$$

VRR around SgrA*

Constraining IMBHs with VRR

2-population model (stars+IMBHs)

IMBHs population hard to reconcile with the disc's survival

A wealth of dynamical processes

An extremely **hierarchical system**

Dynamics of galactic nuclei

Studying stellar dynamics is studying ``ink diffusion"

Ink in water

Stellar orientations

The future of galactic nuclei

UCLA

Infall of **compact objects**

LISA spatial interferometer

Expected observations

Galactic nuclei are exciting

SgrA* is exciting

Cold **accretion** disc

Murchikova+(2019)

Next steps — SgrA* & Observations

Galactic nuclei

Visualisation of SgrA*

Galactic nuclei, a fantastic ``astrophysical lab"

Dense (1,000,000x more than around the Sun)

Far away (10,000,000x smaller than the Moon in the sky)

Relativistic (BH 4,000,000x heavier than the Sun)

Noisy (Great source of gravitational waves)