NEUTRINO-NUCLEON INTERACTIONS IN DENSE AND HOT MATTER

Micaela Oertel

micaela.oertel@obspm.fr

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Cité

> TUG 2023 Workshop, October 10 - 12, 2023

Collaborators: A. Pascal, L. Suleiman, M. Mancini, J. Novak

A D > A B > A B > A

servatoire

Micaela Oertel (LUTH)

INTRODUCTION

2 Charged current neutrino nucleon reactions

- Direct Urca reactions
- Modified Urca reactions

1 INTRODUCTION

- **2** Charged current neutrino nucleon reactions
 - Direct Urca reactions
 - Modified Urca reactions

Image: A match the second s

1 INTRODUCTION

- **2** Charged current neutrino nucleon reactions
 - Direct Urca reactions
 - Modified Urca reactions

3 Some results on proto-neutron star evolution

4 SUMMARY

Image: A math a math

MOTIVATION : COMPACT STAR PHYSICS

- Modeling following astrophysical phenomena
 - Core-Collapse supernovae and subsequent neutron star/black hole formation
 - Neutron stars
 - Binary neutron star mergers (inspiral and post-merger)
- Numerical modeling needs input from microphysics
 - Equation of State (EoS)
 - Reaction rates and transport coefficients

イロト イヨト イヨト イ

NEUTRINO INTERACTIONS

Why are we wondering about ?

1. Core-collapse supernovae

- Neutrino-driven explosion mechanism
- Small changes in interactions rates can push explosions e.g. [Melson 2015]
- Neutrino driven wind and nucleosynthesis
- Proto-neutron star cooling by neutrino emission
- Neutrino emissivities dominant for (P)NS cooling for about 10⁶ yrs

NEUTRINO INTERACTIONS

Why are we wondering about ?

2. Binary neutron star mergers

- Neutron rich and hot environment \rightarrow intense neutrino emission
- Determine neutron to proton ratio in the ejecta (conditions for heavy element nucleosynthesis)
- Release energy (cooling effect)
- Energy and momentum exchange with matter

NEUTRINO INTERACTIONS

Why are we wondering about ?

3. Neutron star cooling

- Energy loss by surface photon and neutrino emission
- Theory predicts essentially three cooling stages
 - Crust thermalisation (~ 10-50 yrs)
 - Neutrino cooling $(\sim 10^5 10^6 \text{ yrs})$
 - Photon cooling $(t \gtrsim 10^6 \text{ yrs})$
- Neutrino emissivities dominant for about $10^6 \ {\rm yrs}$

THERMODYNAMIC CONDITIONS

RELEVANT FOR NEUTRINO-MATTER INTERACTIONS

- CCSN and BNS merger remnants
 - Emission from dense and hot central part
 - Neutrino opacities close to the neutrinosphere determine p/n ratio of ejecta and efficiency of neutrino heating mechanism
 - Matter more neutron rich for BNS mergers
 - Typical neutrino energies from a few to tens of MeV
- Neutron star cooling
 - \blacktriangleright Neutrino emission from the core, typical neutrino energies $\sim T$

NEUTRINO MATTER INTERACTIONS

- Different types of interactions with matter (nucleons, nuclei and charged leptons, photons)
 - scattering (neutral current)
 - absorption/creation processes (charged current)
 - pair creation (neutral current)

SOME TYPICAL REACTIONS $p + e^{-}(+N) \iff n + \nu_{e}(+N)$ $n + e^{+}(+N) \iff p + \bar{\nu}_{e}(+N)$ $(A, Z) + e^{-} \iff (A, Z - 1) + \nu_{e}$ $N + N \implies \nu + \bar{\nu} + N + N$ $\nu + A \implies \nu + A$ $\nu + N \implies \nu + N$

• Here : charged current (CC) processes on nucleons

イロト イボト イヨト イヨ

bservatoire

LUTH

DIRECT URCA REACTIONS

• Governs the following reactions (not all of them are equally relevant)

ELECTRON/POSITRON CAPTURE

 $\begin{array}{l} p+l^- \leftrightarrow n+\nu_l \\ n+l^+ \leftrightarrow p+\bar{\nu_l} \end{array}$

NEUTRON/PROTON DECAY

$$\begin{array}{c} n \leftrightarrow p + l^{-} + \bar{\nu}_{l} \\ p \leftrightarrow n + l^{+} + \nu_{l} \end{array}$$

イロト イヨト イヨト イヨ

DIFFERENT APPROXIMATIONS TO COMPUTE RATES

- Elastic approximation (neglect momentum transfer to nucleons and non-interacting nucleons) \rightarrow simple analytic expressions [Bruenn 1985]
- Include corrections to the nuclear matrix element (weak magnetism . . .) \rightarrow slightly less simple expressions [Horowitz 2002]
- Include full phase space \rightarrow numerical computation [Roberts& Reddy 2017, Guo+2020,...]
- Include full phase space and nuclear interactions

[Reddy+1998, Burrows& Sawyer 1998,...], see also [Järvinnen+2023]

• Analytic results widely used in simulations but crude approximations

MODIFIED URCA REACTIONS

EXAMPLE : EC REACTION

 $p + e^- + N \leftrightarrow n + \nu_e + N$

- Spectator nucleon can lift kinematic restrictions of dUrca reactions
- Considered clearly subdominant to dUrca

A D > A B > A B > A

COMMON APPROXIMATIONS

- All particles on respective Fermi surface \rightarrow cold matter [Friman & Maxwell 1979]
- Neglect momentum transfer \rightarrow low densities [Bacca+2012]
- $\bullet\,$ Intermediate nucleon propagators as $\sim 1/E_e$ or $\sim 1/q_0$
- Only axial part

not adapted to PNS cooling, BNS merger remnant....

bservatoire

RESULTS FOR MURCA REACTIONS

- Order of magntiude analytic estimate indicates a region in T, n_B where Murca is not necessarily suppressed
 - \blacktriangleright Low temperatures and high densities : $\frac{I_{mU}}{I_{dU}} \sim 10^{-6}$
 - High temperatures : $\frac{I_{mU}}{I_{dU}} \sim e^{\eta_i}$ ($n = (\mu^* - m^*)/T$)
 - \rightarrow mUrca not necessarily suppressed for $\eta \sim 0\,!$
- Numerical evalulation computed with
 - Full momentum dependence of matrix element and phase space
 - One pion exchange interaction
- Results confirm estimate

COMPARING DIFFERENT APPROXIMATIONS

- Rates computed with RG(SLy4) EoS at $T=16~{\rm MeV},~n_B=0.15~{\rm fm}^{-3},~Y_e=0.07$
- Murca reactions here as phenomenological finite life-time in Durca reactions

NEUTRINO TOOL KIT

- Aim : provide numerically computed rates for use in simulations
 - Consistent with the underlying equation of state (EoS) model
 - Different levels of approximation : kinematics and nuclear interactions
 - Corrections are energy dependent (difficult to cast into a "gray" correction)
 - Polynomial fit (neutrino energy) to the opacities [Oertel+2020,Pascal+2022], see the data base https://compose.obspm.fr
 - Application to core-collapse supernova simulations (shift in position of neutrinosphere) [Oertel+2020] and proto-neutron star evolution [Pascal+2022]

WEAK EQUILIBRIUM DURING PNS EVOLUTION

 Simulation of PNS evolution with quasi-static GR hydrodynamics + neutrino transport [Pascal+2022]

 β-equilibrium not correctly obtained → breakdown of the elastic approximation at high densities, need for numerical (pre-)computation of opacities

vatoire

INFLUENCE OF NUCLEAR INTERACTIONS

- Prevalent role of convection for dynamical proto-neutron star evolution, nuclear interactions in the opacities is subdominant effect
- $\bullet\,$ Murca processes start to become important for late time evolution $\to\,$ better calculation needed

< □ > < 同 >

SUMMARY AND OUTLOOK

SUMMARY

- Neutrino nucleon interactions important ingredient in compact star astrophysics
- $\bullet\,$ Collective effects important in dense matter $\rightarrow\,$ considerably modified neutrino opacities
- Provide up to date opacities/rates for simulations of compact star astrophysics (dynamics, nucleosynthesis, ...)
- $\bullet\,$ Murca not necessarily suppressed with respect to dUrca reactions $\to\,$ need to care about Murca type reactions
- Prediction of PNS neutrino signal not only needs detailed microphysics but also convection

Outlook

- \bullet Conditions for $\beta\text{-equilibrium}$ \rightarrow conditions for nucleosynthesis
- Include other types of reactions (scattering...) for consistent treatment

イロト イヨト イヨト