Neutrino-nucleon interactions in dense and **HOT MATTER**

Micaela Oertel

micaela.oertel@obspm.fr

[L](http://luth.obspm.fr)aboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Cité

> TUG 2023 Workshop, October 10 - 12, 2023

Collaborators: A. Pascal, L. Suleiman, M. Mancini, J. Novak

K ロ ▶ - K 同 ▶ - K ヨ ▶ - K

servatoire $-LUTH$ QQ **OUTLINE**

OUTLINE

1 INTRODUCTION

² [Charged current neutrino nucleon reactions](#page-11-0)

- **•** [Direct Urca reactions](#page-11-0)
- [Modified Urca reactions](#page-12-0)

Outline

INTRODUCTION

² [Charged current neutrino nucleon reactions](#page-11-0)

- **•** [Direct Urca reactions](#page-11-0)
- [Modified Urca reactions](#page-12-0)

 $A \Box B$ $A \Box B$ $A \Box B$

Outline

INTRODUCTION

- ² [Charged current neutrino nucleon reactions](#page-11-0)
	- **•** [Direct Urca reactions](#page-11-0)
	- [Modified Urca reactions](#page-12-0)

³ [Some results on proto-neutron star evolution](#page-15-0)

4 SUMMARY

MOTIVATION : COMPACT STAR PHYSICS

- Modeling following astrophysical phenomena
	- \triangleright Core-Collapse supernovae and subsequent neutron star/black hole formation
	- Neutron stars
	- Binary neutron star mergers (inspiral and post-merger)
- Numerical modeling needs input from microphysics
	- \blacktriangleright Equation of State (EoS)
	- \blacktriangleright Reaction rates and transport coefficients

Micaela Oertel (LUTH) *ν*[N interactions](#page-0-0) *- Σερματι* Paris, October 12th, 2023 3/16

 4 ロ \rightarrow 4 $\overline{7}$ \rightarrow \rightarrow $\overline{2}$ \rightarrow \rightarrow

LUTH

 Ω

NEUTRINO INTERACTIONS

WHY ARE WE WONDERING ABOUT?

1. Core-collapse supernovae

- Neutrino-driven explosion mechanism
- Small changes in interactions rates can push explosions e.g. [Melson 2015]

- **•** Neutrino driven wind and nucleosynthesis
- Proto-neutron star cooling by neutrino emission
- **•** Neutrino emissivities dominant for (P)NS cooling for about $10^6\;{\rm yrs}$

NEUTRINO INTERACTIONS

WHY ARE WE WONDERING ABOUT?

2. Binary neutron star mergers

- Neutron rich and hot environment \rightarrow intense neutrino emission
- Determine neutron to proton ratio in the ejecta (conditions for heavy element nucleosynthesis)
- Release energy (cooling effect)
- **•** Energy and momentum exchange with matter

 \leftarrow \leftarrow

LUTH Ω

NEUTRINO INTERACTIONS

WHY ARE WE WONDERING ABOUT?

3. Neutron star cooling

- Energy loss by surface photon and neutrino emission
- Theory predicts essentially three cooling stages
	- \blacktriangleright Crust thermalisation $(\sim 10-50 \text{ yrs})$
	- \blacktriangleright Neutrino cooling $(\sim 10^5-10^6$ yrs)
	- \blacktriangleright Photon cooling $(t\gtrsim 10^6$ yrs)
- **•** Neutrino emissivities dominant for about $10^6\,$ yrs

Thermodynamic conditions

Relevant for neutrino-matter interactions

- CCSN and BNS merger remnants
	- \blacktriangleright Emission from dense and hot central part
	- \blacktriangleright Neutrino opacities close to the neutrinosphere determine p/n ratio of ejecta and efficiency of neutrino heating mechanism
	- \triangleright Matter more neutron rich for BNS mergers
	- \blacktriangleright Typical neutrino energies from a few to tens of MeV
- Neutron star cooling
	- \blacktriangleright Neutrino emission from the core, typical neutrino energies $\sim T$

NEUTRINO MATTER INTERACTIONS

- Different types of interactions with matter (nucleons, nuclei and charged leptons, photons)
	- \triangleright scattering (neutral current)
	- \triangleright absorption/creation processes (charged current)
	- \triangleright pair creation (neutral current)

Some typical reactions $p + e^- (+N) \leftrightarrow n + \nu_e (+N)$ $n + e^{+} (+N) \leftrightarrow p + \bar{\nu}_e (+N)$ $(A, Z) + e^- \leftrightarrow (A, Z - 1) + \nu_e$ $N + N \rightarrow \nu + \bar{\nu} + N + N$ $\nu + A \rightarrow \nu + A$ $\nu + N \rightarrow \nu + N$

• Here : charged current (CC) processes on nucleons

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m}

servatoire LUTH

 QQ

DIRECT URCA REACTIONS

Governs the following reactions (not all of them are equally relevant)

Electron/positron capture

 $p + l^- \leftrightarrow n + \nu_l$ $n+l^+ \leftrightarrow p+\bar{\nu}_l$ NEUTRON/PROTON DECAY

$$
n \leftrightarrow p + l^- + \bar{\nu}_l
$$

$$
p \leftrightarrow n + l^+ + \nu_l
$$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Different approximations to compute rates

- Elastic approximation (neglect momentum transfer to nucleons and non-interacting nucleons) \rightarrow simple analytic expressions $[B_{\text{Fuen}}]$ 1985]
- \bullet Include corrections to the nuclear matrix element (weak magnetism \ldots) \rightarrow slightly less simple expressions [Horowitz 2002]
- Include full phase space \rightarrow numerical computation $F_{\text{Roberts\& Reddy 2017, Guo+2020,...]}}$
- Include full phase space and nuclear interactions

[Reddy+1998, Burrows& Sawyer 1998,...], see also [J¨arvinnen+2023]

• Analytic results widely used in simulations but crude approximations Dbselvatoire $-LUTH$

 Ω

MODIFIED URCA REACTIONS

EXAMPLE : EC REACTION

 $p + e^- + N \leftrightarrow n + \nu_e + N$

- Spectator nucleon can lift kinematic restrictions of dUrca reactions
- **Considered clearly subdominant to** dUrca

イロト イ押ト イヨト イ

Common approximations

- All particles on respective Fermi surface \rightarrow cold matter [Friman & Maxwell 1979]
- Neglect momentum transfer \rightarrow low densities [Bacca+2012]
- \bullet Intermediate nucleon propagators as $\sim 1/E_e$ or $\sim 1/q_0$
- Only axial part

not adapted to PNS cooling, BNS merger remnant....

bservatoire

LUTH Ω

RESULTS FOR MURCA REACTIONS

- Order of magntiude analytic estimate indicates a region in T , n_B where Murca is not necessarily suppressed
	- \blacktriangleright Low temperatures and high densities : $\frac{I_{mU}}{I_{dU}} \sim 10^{-6}$
	- ► High temperatures : $\frac{I_{mU}}{I_{dU}} \sim e^{\eta_i}$
		- $(\eta = (\mu^* m^*)/T)$
		- \rightarrow mUrca not necessarily suppressed for $\eta \sim 0!$
- Numerical evalulation computed with
	- \blacktriangleright Full momentum dependence of matrix element and phase space
	- \triangleright One pion exchange interaction
- **e** Results confirm estimate

Comparing different approximations

- Rates computed with RG(SLy4) EoS at $T=16$ MeV, $n_B=0.15$ fm $^{-3}$, $Y_e = 0.07$
- Murca reactions here as phenomenological finite life-time in Durca reactions

4日下

Neutrino tool kit

- Aim : provide numerically computed rates for use in simulations
	- \triangleright Consistent with the underlying equation of state (EoS) model
	- Different levels of approximation : kinematics and nuclear interactions
	- \triangleright Corrections are energy dependent (difficult to cast into a "gray" correction)
	- ▶ Polynomial fit (neutrino energy) to the opacities [Oertel+2020, Pascal+2022], see the data base <https://compose.obspm.fr>
	- \triangleright Application to core-collapse supernova simulations (shift in position of neutrinosphere) [Oertel+2020] and proto-neutron star evolution [Pascal+2022]

WEAK EQUILIBRIUM DURING PNS EVOLUTION

 \bullet Simulation of PNS evolution with quasi-static GR hydrodynamics $+$ neutrino transport [Pascal+2022]

• β -equilibrium not correctly obtained \rightarrow breakdown of the elastic approximation at high densities, need for numerical (pre-)computation of opacities

 \leftarrow \Box

vatoire LUTH つへへ

Influence of nuclear interactions

- Prevalent role of convection for dynamical proto-neutron star evolution, nuclear interactions in the opacities is subdominant effect
- \bullet Murca processes start to become important for late time evolution \rightarrow better calculation needed

(□) () (

 299

SUMMARY AND OUTLOOK

SUMMARY

- Neutrino nucleon interactions important ingredient in compact star astrophysics
- Collective effects important in dense matter \rightarrow considerably modified neutrino opacities
- Provide up to date opacities/rates for simulations of compact star astrophysics (dynamics, nucleosynthesis, . . .)
- Murca not necessarily suppressed with respect to dUrca reactions \rightarrow need to care about Murca type reactions
- Prediction of PNS neutrino signal not only needs detailed microphysics but also convection

OUTLOOK

- Conditions for β -equilibrium \rightarrow conditions for nucleosynthesis
- Include other types of reactions (scattering...) for consistent treatment

 QQ

イロト イ部 トイミト イミト