X-rays constraints on sub-GeV Dark Matter

Based on work with M. Cirelli, N. Fornengo, E. Pinetti & B. M. Roach JCAP 07 (2023) 026 [arXiv:2303.08854]

> Jordan Koechler LPTHE, Sorbonne University, Paris

Théorie, Univers et Gravitation 2023

Outline

- Introduction
- X-rays from Dark Matter (DM) annihilations/decays
- Analysis and results
- Summary and prospects

Outline

- Introduction
- X-rays from Dark Matter (DM) annihilations/decays
- Analysis and results
- Summary and prospects

• We focus on 'light' DM $(1 \ {\rm MeV} < m_{DM} < 5 \ {\rm GeV})$

- We focus on 'light' DM $(1 \ {\rm MeV} < m_{DM} < 5 \ {\rm GeV})$
- <u>Issue 1</u>: <u>Solar winds</u> are a barrier to low-energy charged particles

- We focus on 'light' DM $(1 \ {\rm MeV} < m_{DM} < 5 \ {\rm GeV})$
- <u>Issue 1</u>: <u>Solar winds</u> are a barrier to low-energy charged particles
- What to do?

- We focus on 'light' DM $(1 \ {\rm MeV} < m_{DM} < 5 \ {\rm GeV})$
- <u>Issue 1</u>: <u>Solar winds</u> are a barrier to low-energy charged particles
- What to do?
 - Look at Voyager 1 & 2 data!

- We focus on 'light' DM $(1 \ {\rm MeV} < m_{DM} < 5 \ {\rm GeV})$
- <u>Issue 1</u>: <u>Solar winds</u> are a barrier to low-energy charged particles
- What to do?
 - Look at Voyager 1 & 2 data!
 - Look for γ -ray signals

• <u>Issue 2</u>: No data of quality for γ -rays between ~ 100 keV – 100 MeV

Adapted from De Angelis et al., eASTROGAM coll., 1611.02232

- <u>Issue 2</u>: No data of quality for γ -rays between ~ 100 keV 100 MeV
- Secondary emissions allow to circumvent the issue → study X-rays signals from light DM

Adapted from De Angelis et al., eASTROGAM coll., 1611.02232

Outline

- Introduction
- X-rays from Dark Matter (DM) annihilations/decays
- Analysis and results
- Summary and prospects

• There are a few ways to generate X-rays from DM annihilation/decay :

- There are a few ways to generate X-rays from DM annihilation/decay :
 - Prompt emissions:

• Secondary emissions:

- There are a few ways to generate X-rays from DM annihilation/decay :
 - Prompt emissions:
 - Final state radiation (FSR): DM (DM) $\rightarrow \mu^+ \mu^- \gamma$

• Secondary emissions:

- There are a few ways to generate X-rays from DM annihilation/decay :
 - Prompt emissions:
 - Final state radiation (FSR): DM (DM) $\rightarrow \mu^+ \mu^- \gamma$
 - Radiative decay (Rad): DM (DM) $\rightarrow \mu^+\mu^- \rightarrow \mu^+ e^- \bar{\nu}_e \nu_\mu \gamma$
 - Secondary emissions:

- There are a few ways to generate X-rays from DM annihilation/decay :
 - Prompt emissions:
 - Final state radiation (FSR): DM (DM) $\rightarrow \mu^+ \mu^- \gamma$
 - Radiative decay (Rad): DM (DM) $\rightarrow \mu^+\mu^- \rightarrow \mu^+ e^- \bar{\nu}_e \nu_\mu \gamma$
 - Secondary emissions:
 - Inverse-Compton scattering (ICS): up-scattering of ambient photons thanks to DM-produced e^{\pm}

• Light DM mass range: $1 \text{ MeV} < m_{DM} < 5 \text{ GeV}$

- Light DM mass range: $1 \text{ MeV} < m_{DM} < 5 \text{ GeV}$
- Kinematically open primary channels that produce e^{\pm} one way or another:

- Light DM mass range: $1 \text{ MeV} < m_{DM} < 5 \text{ GeV}$
- Kinematically open primary channels that produce e[±] one way or another:
 DM (DM) → e⁺e⁻

- Light DM mass range: $1 \text{ MeV} < m_{DM} < 5 \text{ GeV}$
- Kinematically open primary channels that produce e^{\pm} one way or another:
 - DM (DM) $\rightarrow e^+e^-$
 - DM (DM) $\rightarrow \mu^{+}\mu^{-}$ $(\mu^{\pm} \rightarrow e^{\pm}\nu_{e}\nu_{\mu} @ \sim 100\%)$

- Light DM mass range: $1 \text{ MeV} < m_{DM} < 5 \text{ GeV}$
- Kinematically open primary channels that produce e^{\pm} one way or another:
 - DM (DM) $\rightarrow e^+e^-$
 - DM (DM) $\rightarrow \mu^{+}\mu^{-}$ $(\mu^{\pm} \rightarrow e^{\pm}\nu_{e}\nu_{\mu} @ \sim 100\%)$
 - DM (DM) $\to \pi^{+}\pi^{-}$ $(\pi^{\pm} \to \mu^{\pm}\nu_{\mu} @ \sim 100\%)$

• Differential flux of photons from prompt emissions:

• Differential flux of photons from prompt emissions:

f = FSR, Rad

• Differential flux of photons from prompt emissions:

Cirelli et al., 1012.4515

Angle from the GC [degrees]

• DM-produced e^{\pm} can up-scatter ambient photons up to X-ray energies

• DM-produced e^{\pm} can up-scatter ambient photons up to X-ray energies

- Ambient photons are: CMB, dust-rescattered IR and optical starlight (SL)
- Energy range $\sim 0.1~meV$ to 10~eV

• DM-produced e^{\pm} can up-scatter ambient photons up to X-ray energies

- Ambient photons are: CMB, dust-rescattered IR and optical starlight (SL)
- Energy range $\sim 0.1~meV$ to 10~eV

• To compute the IC-scattered photon flux, we need a few ingredients:

• To compute the IC-scattered photon flux, we need a few ingredients:

X-rays constraints on sub-GeV Dark Matter

1) Local number density of ambient photons

- For CMB → black body spectrum
- For IR and SL → GalPROP intensity maps

• To compute the IC-scattered photon flux, we need a few ingredients:

2) Local number density of DM-produced e^{\pm}

$$\vec{\nabla} \left(K \, \vec{\nabla} f_{e^{\pm}} - \vec{v}_c f_{e^{\pm}} \right) + \frac{\partial}{\partial E_e} \left(b_{loss} f_{e^{\pm}} + \beta^2 K_{pp} \frac{\partial f_{e^{\pm}}}{\partial E_e} \right) + Q_{e^{\pm}}^{DM} = 0$$

spatial convection energy loss momentum space source diffusion

2) Local number density of DM-produced e^{\pm}

• We adopt a minimal model of CR transport (e.g., SLIM in Génolini et al. 2103.04108)

2) Local number density of DM-produced e^{\pm}

- We adopt a minimal model of CR transport (e.g., SLIM in Génolini et al. 2103.04108)
- For high-energy e^{\pm} in the Milky Way, energy losses dominate over spatial diffusion

2) Local number density of DM-produced e^{\pm}

The solution is now analytic!

- We adopt a minimal model of CR transport (e.g., SLIM in Génolini et al. 2103.04108)
- For high-energy e^{\pm} in the Milky Way, energy losses dominate over spatial diffusion
X-rays from DM annihilations/decays

• To compute the IC-scattered photon flux, we need a few ingredients:

X-rays from DM annihilations/decays

3) Klein-Nishina cross section in the Thomson limit ($E_{\gamma} \ll E_e$)

$$\sigma_{IC}(y, E_e) = \frac{3\sigma_T}{4\gamma_e^2} \frac{2y\ln y + y + 1 - 2y^2}{y}$$
$$y = \frac{E_\gamma}{4\gamma_e^2 E_\gamma^0}, \qquad \gamma_e = \frac{E_e}{m_e}$$

X-rays from DM annihilations/decays

• To compute the IC-scattered photon flux, we need a few ingredients:

Outline

- Introduction
- X-rays from Dark Matter (DM) annihilations/decays
- Analysis and results
- Summary and prospects

• In this study we keep a **conservative** approach:

• In this study we keep a **conservative** approach:

$$\chi^{2}_{>}(p, m_{DM}) = \sum_{i \in \text{bins}} \frac{\text{Max}(\Phi_{DM\gamma,i}(p, m_{DM}) - \Phi_{i}, 0)^{2}}{\sigma_{i}^{2}}$$
$$p = \langle \sigma v \rangle, \Gamma$$

• Impose a (2 σ) bound when $\chi^2_>(p, m_{DM}) \ge 4$

INTEGRAL diffuse emission searches 2003-2009 Bouchet et al., INTEGRAL coll., 1107.0200

<u>Diffuse γ-rays:</u> Essig et al., 1309.4091 <u>Voyager 1:</u> Boudaud et al., 1612.07698 <u>Leo T gas heating:</u> Wakedar and Wang, 2111.08025 <u>CMB:</u> Slatyer, 1506.03811, Lopez-Honorez et al., 1303.5094, Liu et al., 1604.02457 <u>INTEGRAL FSR:</u> Calore et al. 2209.06299

Bounds on annihilating Dark Matter

Bounds on decaying Dark Matter

Analysis and results

Outline

- Introduction
- X-rays from Dark Matter (DM) annihilations/decays
- Analysis and results
- Summary and prospects

• Proof of concept: secondary emissions allow to circumvent the MeV gap

- Proof of concept: secondary emissions allow to circumvent the MeV gap
- As a bonus they can set strong bounds on light DM, although their robustness is debatable

- Proof of concept: secondary emissions allow to circumvent the MeV gap
- As a bonus they can set strong bounds on light DM, although their robustness is debatable
- Two possible improvements:

- Proof of concept: secondary emissions allow to circumvent the MeV gap
- As a bonus they can set strong bounds on light DM, although their robustness is debatable
- Two possible improvements:
 - 1) Astrophysical background modeling

- Proof of concept: secondary emissions allow to circumvent the MeV gap
- As a bonus they can set strong bounds on light DM, although their robustness is debatable
- Two possible improvements:
 - 1) Astrophysical background modeling
 - 2) Deviate from the minimal CR transport scheme (especially include K_{pp})

Balaji, De la Torre Luque, JK, to appear

• Other prospects to explore:

- Other prospects to explore:
 - Look at p-wave annihilation $\langle \sigma v \rangle = \langle \sigma v \rangle_s + \langle \sigma v \rangle_p v^2 + \mathcal{O}(v^4)$

- Other prospects to explore:
 - Look at p-wave annihilation $\langle \sigma v \rangle = \langle \sigma v \rangle_s + \langle \sigma v \rangle_p v^2 + \mathcal{O}(v^4)$
 - Test BSM models that provide a light DM candidate:
 1) Injection spectra of e[±] from DM annihilations/decays channels
 2) Branching ratios
 - 3) Expression of $\langle \sigma v \rangle$ as a function of the couplings

Thank you for your attention!

Diffusion-loss equation ingredients

Diffusion-loss equation ingredients

• Source term:
$$Q(E_e, \vec{x}) = \begin{cases} \frac{\langle \sigma v \rangle}{2} \left(\frac{\rho_{DM}(\vec{x})}{m_{DM}} \right)^2 \frac{dN_{e^{\pm}}}{dE_e} \\ \Gamma\left(\frac{\rho_{DM}(\vec{x})}{m_{DM}} \right) \frac{dN_{e^{\pm}}}{dE_e} \end{cases}$$

• Where
$$\frac{dN_{e^{\pm}}}{dE_{e}}$$
 is the e^{\pm} injection spectrum:

- For the e^+e^- channel: monochromatic (DM $\rightarrow e^{\pm}$)
- For the $\mu^+\mu^-$ channel: boosted Michel spectrum (DM $\rightarrow \mu^{\pm} \rightarrow e^{\pm}$)
- For the $\pi^+\pi^-$ channel: double boosted Michel spectrum (DM $\rightarrow \pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$)

Michel spectrum and boosts

• Michel spectrum:
$$\frac{dN_e^{\mu \to e v \overline{v}}}{dE_e} = \frac{4\sqrt{\xi^2 - 4\varrho^2}}{m_{\mu}} [\xi(3 - 2\xi) + \varrho^2(3\xi - 4)]$$
$$\xi = \frac{2E_e}{m_{\mu}}, \qquad \varrho = \frac{m_e}{m_{\mu}}$$

• Lorentz boost:
$$\frac{dN}{dE} = \frac{1}{2\beta\gamma} \int_{E'_{min}}^{E'_{max}} \frac{1}{p'} \frac{dN}{dE'} \qquad E'_{\max|min} = \gamma(E \pm \beta p)$$

$$\gamma = \frac{E_A}{m_A}$$
 (A = parent particle)

Inverse-Compton scattering power

Inverse-Compton scattering

• To compute the IC-scattered photon flux, we need a few ingredients:

Inverse-Compton scattering

• To compute the IC-scattered photon flux, we need a few ingredients:

Dataset energy ranges

Suzaku: 0.4 – 5 keV XMM-Newton: 2.5 – 8 keV NuSTAR: 3 – 20 keV INTEGRAL: 27 – 1800 keV

NUSTAR datasets	Observation ID	Pointing RA (deg)	; (J2000) ^a DEC (deg)	Effective Exposure ^b FPMA / FPMB (ks)	Detector Area ^c FPMA / FPMB (cm ²)	Avg. Solid Angled FPMA / FPMB (deg ²)	
	40032001002	265.8947	-29.5664	39.7 / 39.6	9.89 / 11.10	3.73 / 4.09	
	40032002001	265.7969	-29.5139	39.8 / 39.6	7.14 / 8.05	4.06/4.12	
	40032003001	265.6991	-29.4613	39.8 / 39.6	8.18 / 8.92	3.47 / 4.01	
	40032004002	265.9550	-29.4812	22.6 / 22.7	4.19/6.54	2.34 / 3.13	
e 2. Data sets used in the analysis.	$\begin{array}{c} 40032005002 \\ 40032006001 \end{array}$	265.8572 265.7595	$-29.4288 \\ -29.3762$	$25.6 / 25.8 \\ 28.6 / 28.6$	9.78 / 7.85 9.98 / 6.18	3.80 / 3.85 3.76 / 3.74	
				,			

Table

ID	Field	Begin	End	$T_{\rm exp}$
1	COSMOS EP1	26-12-2012	20-01-2013	750 ks
2	COSMOS EP2	03-04-2013	21-05-2013	630 ks
3	COSMOS EP3	03-12-2013	25-02-2014	1020 ks
4	EGS	15-11-2013	27-11-2014	1.5 Ms
5	ECDFS	28-09-2012	01-04-2013	1.4 Ms
6	UDS	24-01-2016	18-11-2016	1.7 Ms

^a Roll angle was 332° for all.

^b After all data cleaning.

.

^c After stray light, ghost ray, and bad pixel removal.

^d Average solid angle of sky from which 0-bounce photons can be detected, after correcting for removal of stray light, ghost rays, and bad pixels, as well as efficiency due to vignetting effects.

TABLE I. NuSTAR observations used for this analysis.

Perez et al., 1609.00667 Data taken between 2012 and 2014

Krivonos et al., 2011.11469 Data taken between 2012 and 2016

TABLE I. NuSTAR Galactic Bulge observations used in this analysis, with 0-bounce effective areas after data cleaning.

NuSTAR obsID	Pointing (J2000)	Effective Exposure ^a	Detector Area $A_{0b}{}^{b}$	Solid Angle $\Delta \Omega_{0b}^{c}$
	RA, Dec (deg)	FPMA / B (ks)	$FPMA / B (cm^2)$	$FPMA / B (deg^2)$
40410001002	253.2508, -26.6472	50.0 / 49.8	11.97 / 11.88	4.36 / 4.62
40410002002	280.3521, -27.6344	44.7 / 44.6	$12.71 \ / \ 12.60$	4.53 / 4.56

^a After OPTIMIZED SAA filtering and manual data screening.

^b After bad pixel removal (both obsIDs) and point-source masking (40410001002 only). ^c Average solid angle of sky for detecting 0-bounce photons, after correcting for bad pixel removal and vignetting efficiency.

Roach et al., 1908.09037 Data taken between in 2018

NuSTAR constraints

NuSTAR (2012-2018 data):

NuSTAR

DM DM $\rightarrow e^+e^-$

10

- blank-sky fields Krivonos et al., 2011.11469
- GC obs. Perez et al., 1609.00667
- off-plane obs. Roach et al., 1908.09037

10⁻²¹

10⁻²²

10⁻²³

10⁻²⁴

10⁻²⁵

10⁻²⁶

10⁻²⁷

10⁻²⁸

10⁻²⁹

Annihilation cross section $\langle \sigma v \rangle$ [cm³/s]

Suzaku datasets

36 ⁵ 225*	COSMOS COSMOS 270°	10-00-14 10-00-14 315°	OP1 [®] GC	GB EG .HL .HL	A NEP LL10	135°	180
-30-	LX-3 Off-Fill ECDFS	On-FIL HL-B	©0P2 ¢ <15° //<30		LL21 M1/2 UDS	×MM.	

Table 1. Log of observations, ordered by |b|

Data set		Obs ID	Date	Exposure (ks)		Aim point		
ID	Field Name (Short Name)			Total	Cleaned	(ℓ,b)	$(E_{ m Lon},E_{ m Lat})^*$	
1	GB1428+4217 (GB)	701092010	Jun 12-13, 2006	48.7	34.9	(75.9, 64.9)	(194.2, 52.7)	
2	High latitude B (HL-B)	500027020	Feb 17-20, 2006	103.6	29.7	(272.4, -58.3)	(4.4, -61.4)	
3	Lockman hole 2 (LH-2)	101002010	May 17-19, 2006	80.4	40.0	(149.7, 53.2)	(137.1, 45.1)	
4	Lockman hole 1 (LH-1)	100046010	Nov 14-15, 2005	77.0	61.7	(149.0, 53.2)	(137.2, 45.5)	
5	Off Filament ^a (Off-FIL)	501001010	Mar 1-2, 2006	80.1	59.6	(278.7, -47.1)	(354.8, -72.6)	
6	On Filament ^a (On-FIL)	501002010	Mar 3-6 , 2006	101.4	59.2	(278.7, -45.3)	(354.1, -74.4)	
7	High latitude A (HL-A)	500027010	Feb 14-15, 2006	73.6	53.2	(68.4, 44.4)	(228.8, 63.5)	
8	$MBM12 \text{ off cloud}^{b} (M12 \text{ off })$	501104010	Feb 6-8, 2006	75.3	51.0	(157.3, -36.8)	(44.5, 2.3)	
9	LMC X-3 Vicinity ^c (LX-3)	500031010	Mar 17-18, 2006	82.0	56.1	(273.4, -32.6)	(41.2, -86.2)	
10	North Ecliptic Pole 1 ^d (NEP1)	100018010	Sep 2-4, 2005	106.2	58.7	(95.8, 28.7)	(334.8, 88.7)	
11	North Ecliptic Pole 2 (NEP2)	500026010	Feb 10-12, 2006	75.6	16.5	(95.8, 28.7)	(334.8, 88.7)	
12	Low latitude $86-21$ (LL21)	502047010	May 9-10, 2007	81.5	57.0	(86.0, -20.8)	(347.6, 38.4)	
13	Low latitude 97+10 (LL10)	503075010	Apr 15-16, 2008	79.8	40.8	(96.6, 10.4)	(0.7, 70.6)	
R1	MBM12 on cloud ^{b,e} (M12on)	500015010	Feb 3-6, 2006	102.9	68.0	(159.2, -34.5)	(47.2, 2.6)	
$\mathbf{R2}$	Midplane 235^{e} (MP235)	502021010	Apr 22-25, 2007	189.5	53.0	(235.0, 0.0)	(119.5, -40.6)	
D	Describe prediction of the description of all (2007) b Gratith at all (2007) C Vac at all (2000) d Tatition at all							

Results previously published by ^a Henley et al. (2007), ^b Smith et al. (2007), ^c Yao et al. (2009), ^d Fujimoto et al. (2007), ^e Masui et al. (2009).

* Ecliptic coordinate

Yoshino et al., 0903.2981

https://heasarc.gsfc.nasa.gov/docs/suzaku /gallery/performance/xis_area.html

Suzaku constraints

Suzaku high-latitude fields 2006-2008

Yoshino et al., 0903.2981

Suzaku

10⁻²¹

10⁻²²

10⁻²³

10⁻²⁴

10⁻²⁵

10⁻²⁶

10⁻²⁷

10⁻²⁸

10⁻²⁹

Annihilation cross section (σ v) [cm³/s]

INTEGRAL datasets

 $DM \rightarrow e^+e^-$

M_{DM} = 93 MeV

 $\tau = 1. \times 10^{25} \text{ s}$

50

Bouchet et al., INTEGRAL coll., 1107.0200

J. Koechler – TUG 2023

X-rays constraints on sub-GeV Dark Matter

0

Latitude b [degrees]

-50

INTEGRAL constraints

INTEGRAL diffuse emission searches 2003-2009

Bouchet et al., INTEGRAL coll., 1107.0200

10⁻²¹

10⁻²²

10⁻²³

10⁻²⁴

10⁻²⁵

10⁻²⁶

10⁻²⁷

10⁻²⁸

10-29

INTEGRAL

DM DM $\rightarrow e^+e^-$

10

Annihilation cross section (σ v) [cm³/s]
XMM-Newton datasets

https://github.com/bsafdi/XMM_BSO_DATA

Datasets + Instrument response functions

XMM-Newton constraints

XMM-Newton whole-sky observations 1999-2018

Foster et al., 2102.02207

XMM–Newton (MOS)

DM DM $\rightarrow e^+e^-$

10

https://github.com/bsafdi/XMM_BSO_DATA

10⁻²¹

10⁻²²

10⁻²³

10⁻²⁴

10⁻²⁵

10⁻²⁶

10⁻²⁷

10⁻²⁸

10⁻²⁹

Annihilation cross section $\langle \sigma v \rangle$ [cm³/s]

ICS halo function (spatial distribution)

Annihilation ($\eta = 2$)

Decay ($\eta = 1$)

$$E_{ICS}(E_{\gamma}, E_e, b, l) = 2 E_{\gamma} \int_{l.o.s.} \frac{ds}{r_{\odot}} \left(\frac{\rho(s, b, l)}{\rho_{\odot}}\right)^{\eta} \int_{m_e}^{E_e} dE \frac{\mathcal{P}_{IC}(E_{\gamma}, E, s, b, l)}{b(E, s, b, l)} \qquad \qquad E_{\gamma} = 5 \text{ keV}$$
$$E_e = 1 \text{ GeV}$$

Galactic magnetic field configurations

$$B(r,z) = B_0 \exp\left(-\frac{r-r_{\odot}}{R_D} - \frac{|z|}{z_D}\right)$$

Models	$B_0(\mu G)$	$r_D (kpc)$	$z_D(kpc)$
MF1	4.78	10	2
MF2	5.1	8.5	1
MF3	9.1	30	4