1

Accelerating cosmological inference from Euclid with Marginal Neural Ratio Estimation

Guillermo Franco Abellán TUG - 11/10/2023

GRavitation AstroParticle Physics Amsterdam

Ongoing work with Guadalupe C. Herrera, Matteo Martinelli, Christoph Weniger, & others

On July 1, Euclid was launched to L2

[ESA's Euclid space satellite]

On July 1, Euclid was launched to L2

[ESA's Euclid space satellite]

Over the next 6 years, Euclid will measure the shapes, and redshifts of billions of galaxies, across ~1/3 of the sky

On July 1, Euclid was launched to L2

[ESA's Euclid space satellite]

First public data release expected in 2025

Over the next 6 years, Euclid will measure the shapes, and redshifts of billions of galaxies, across ~1/3 of the sky

3

Many more astronomical data to come…

3

Many more astronomical data to come…

Analysing these high-quality data will be challenging with standard methods

Traditional likelihood-based methods (MCMC, Nested Sampling,…)

The curse of dimensionality

Traditional likelihood-based methods (MCMC, Nested Sampling,…) \rightarrow compute joint posterior and then marginalise

Scale poorly with dimensionality of parameter space

Ex: For Euclid, we expect to have **+50 nuisance parameters**

The curse of dimensionality

The curse of dimensionality

$P(z_{\text{wald}} | x_0) = \int dz_{\text{Pierre}} dz_{\text{Thomas}} dz_{\text{Julien}} \dots dz_{\text{Killian}} P(z_{\text{Waldo}}, z_{\text{Pierre}}, z_{\text{Thomas}}, z_{\text{Julien}}, \dots, z_{\text{Killian}} | x_0)$ Marginal posterior and the Marginal posterior

Are there methods to overcome this problem?

Are there methods to overcome this problem?

Can machine learning be helpful?

MNRE = **M**arginal **N**eural **R**atio **E**stimation Implemented in [Swy](https://github.com/undark-lab/swyft)ft* [\[Miller+ 20\]](https://arxiv.org/abs/2011.13951)

* Stop Wasting Your Precious Time

Simulation-based inference (or likelihood-free inference)

Simulation-based inference (or likelihood-free inference)

Stochastic simulator that maps from model parameters **z** to data **x**

 $\mathbf{X} \sim p(\mathbf{X} | \mathbf{Z})$ (implicit likelihood)

Neural Ratio Estimation

$$
r(\mathbf{x}; \mathbf{z}) = \frac{p(\mathbf{x} | \mathbf{z})}{p(\mathbf{x})} = \frac{p(\mathbf{z} | \mathbf{x})}{p(\mathbf{z})} = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})}
$$

$$
r(\mathbf{x}; \mathbf{z}) = \frac{p(\mathbf{x} | \mathbf{z})}{p(\mathbf{x})} = \frac{p(\mathbf{z} | \mathbf{x})}{p(\mathbf{z})} = \boxed{\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})}}
$$

Rephrase inference as a binary classification

Marginal inference

Instead of estimating all parameters, we can cherry-pick what we care about

Marginal inference

Instead of estimating all parameters, we can cherry-pick what we care about

MNRE has been successfully applied in many contexts:

- Strong lensing [[Montel+ 22\]](https://arxiv.org/abs/2205.09126)
	- **Stellar Streams** [[Alvey+ 23\]](https://arxiv.org/abs/2304.02032)
		- **Gravitational Waves** [\[Bhardwaj+ 23\]](https://arxiv.org/abs/2304.02035) [[Alvey+ 23\]](https://arxiv.org/abs/2308.06318)
		- **CMB** [[Cole+ 22](https://arxiv.org/abs/2111.08030)]
- **21-cm** [\[Saxena+ 23](https://arxiv.org/abs/2303.07339)]

MNRE has been successfully applied in many contexts:

- Strong lensing [[Montel+ 22\]](https://arxiv.org/abs/2205.09126)
	- **Stellar Streams** [[Alvey+ 23\]](https://arxiv.org/abs/2304.02032)
		- **Gravitational Waves** [\[Bhardwaj+ 23\]](https://arxiv.org/abs/2304.02035) [[Alvey+ 23\]](https://arxiv.org/abs/2308.06318)
		- **CMB** [[Cole+ 22](https://arxiv.org/abs/2111.08030)]
		- **21-cm** [\[Saxena+ 23](https://arxiv.org/abs/2303.07339)]

Our goal: apply MNRE to **Euclid** primary observables

Summarise maps of positions/shapes using three 2-point statistics **(3x2pt)**:

… measured for different tomographic redshift bins*

Summarise maps of positions/shapes using three 2-point statistics **(3x2pt)**:

… measured for different tomographic redshift bins*

Summarise maps of positions/shapes using three 2-point statistics **(3x2pt)**:

* We consider only photometric redshifts, but Euclid will also create a spectroscopic survey

14

3x2pt statistics described by a series of power spectra:

$$
C_{ij}^{XY}(\ell) = \int dz W_i^X(z) W_j^Y(z) P_m(k_\ell, z)
$$

Matter power spectrum

Window functions

14

3x2pt statistics described by a series of power spectra:

$$
C_{ij}^{XY}(\ell) = \int dz W_i^X(z) W_j^Y(z) P_m(k_\ell, z)
$$

For 10 redshift bins up to $z = 3$ **+200 power spectra!**

Matter power spectrum

Window functions

3x2pt statistics described by a series of power spectra:

$$
C_{ij}^{XY}(\ell) = \int dz W_i^X(z) W_j^Y(z) P_m(k_\ell, z)
$$

For 10 redshift bins up to $z = 3$ **+200 power spectra!**

Matter power spectrum

Window functions **Ex:**

Preliminary results

For **3x2pt**, we use a simulator based on a simpli fied Euclid likelihood (6 nuisance params)

Preliminary results

For **3x2pt**, we use a simulator based on a simplified Euclid likelihood (6 nuisance params)

Perform mock data analysis on **ΛCDM** model (5 cosmo params)

Preliminary results

For **3x2pt**, we use a simulator based on a simplified Euclid likelihood (6 nuisance params)

Perform mock data analysis on **ΛCDM** model (5 cosmo params)

Euclid will signi ficantly deepen our understanding of the dark universe

- Euclid will significantly deepen our understanding of the dark universe
	- To perform cosmological inference from Euclid data efficiently, we need to go beyond the MCMC

- Euclid will significantly deepen our understanding of the dark universe
- To perform cosmological inference from Euclid data efficiently, we need to go beyond the MCMC
- MNRE provides a highly efficient and flexible framework to analyse Euclid data

- Euclid will significantly deepen our understanding of the dark universe
- To perform cosmological inference from Euclid data efficiently, we need to go beyond the MCMC
- MNRE provides a highly efficient and flexible framework to analyse Euclid data

Early commissioning test image, Euclid VIS instrument

THANKS FOR YOUR ATTENTION g.francoabellan@uva.nl

Can we trust our results?

Even if NNs are often seen as ''black boxes'', it is possible to perform

statistical consistency tests which are imposible with MCMC

Can we trust our results?

Even if NNs are often seen as ''black boxes'', it is possible to perform

statistical consistency tests which are imposible with MCMC

Exploit MNRE's local amortization:

[Cole+ 22](https://arxiv.org/abs/2111.08030)

Can we trust our results?

We can empirically estimate the Bayesian coverage

