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[ESA’s Euclid space satellite]

@ OnJuly1, Euclid was launched to L2
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@ Over the next 6 years, Euclid will
measure the shapes, and redshifts of

billions of galaxies, across ~1/3 of
the sky

@ First public data release expected in 2025



Many more astronomical data to come...
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Many more astronomical data to come...
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The curse of dimensionality

@ Traditional likelihood-based methods (MCMC, Nested Sampling,...)
— compute joint posterior and then marginalise

€ Scale poorly with dimensionality of parameter space

+50 nuisance parameters




The curse of dimensionality

Marginal posterior Joint posterior
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Are there methods to overcome this problem?



Are there methods to overcome this problem?

Can machine learning be helpful?



ANEWHOPE

MNRE = Marginal Neural Ratio Estimation
Implemented in Swyft* [Miller+ 20]

* Stop Wasting Your Precious Time


https://github.com/undark-lab/swyft
https://arxiv.org/abs/2011.13951

Marginal Neural Ratio Estimation
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Marginal Neural Ratio Estimation

¢ Simulation-based inference
(or likelihood-free inference)

l

Stochastic simulator that maps from
model parameters z to data x

X ~ p(X|z) (implicit likelihood)




Marginal Neural Ratio Estimation

¢ Neural Ratio Estimation
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Marginal Neural Ratio Estimation

¢ Neural Ratio Estimation

p(x|2) _ p(z|x)
px)  p@)

Rephrase inference as a binary classification
problem, and solve it by training a NN on
simulated data

(x,2) ~ p(X,2z) (X,z) ~ p(X)p(z)

zepra % . )ctopus ﬁ
ostrich zebra

octopus ostrich




Marginal Neural Ratio Estimation

) Marginal inference

Instead of estimating all parameters,
we can cherry-pick what we care about
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Marginal Neural Ratio Estimation

A

) Marginal inference

Instead of estimating all parameters,
we can cherry-pick what we care about

l

More flexible & efficient
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MNRE has been successfully applied in many contexts:

@ Strong lensing [Montel+ 22]

) Stellar Streams [Alvey+ 23]

€ Gravitational Waves [Bhardwaj+ 23] [Alvey+ 23]

@ CMB [Cole+ 22]

) 21-cm [Saxena+ 23]
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MNRE has been successfully applied in many contexts:

@ Strong lensing [Montel+ 22]

) Stellar Streams [Alvey+ 23]

€ Gravitational Waves [Bhardwaj+ 23] [Alvey+ 23]

) CMB |[Cole+22]

) 21-cm [Saxena+ 23]

apply MNRE to Euelid primary observables
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Which are the Euclid primary observables?

Background galaxies &

Lensed image

of background
galaxies (shapes)

foreground
galaxies
(positions)
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Which are the Euclid primary observables?

Summarise maps of positions/shapes
using three 2-point statistics (3x2pt):

€ Galaxy clustering ®---O

@) Galaxy-Galaxy lensing @----- ’

) Cosmic Shear
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Which are the Euclid primary observables?

Summarise maps of positions/shapes
using three 2-point statistics (3x2pt):

... measured for different
7 Galaxy clustering ®o----0 tomographic redshift bins*

@) Galaxy-Galaxy lensing @----- ’

) Cosmic Shear

* We consider only photometric redshifts, but Euclid will also create a spectroscopic survey
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Which are the Euclid primary observables?

@) 3x2pt statistics described by a
series of power spectra:

C§ ") = [dz W/,X(Z)W]-Y (2) P, (k,,2)

Window Matter power
functions spectrum
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— +200 power spectra!




Which are the Euclid primary observables?

@) 3x2pt statistics described by a
series of power spectra:

Cff ") = sz W/,X(Z)W}Y (2) P, (k,,2)

Window Matter power
functions spectrum

@ For 10 redshift binsuptoz =3
— +200 power spectra!
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Preliminary results

€ For 3x2pt, we use a simulator
based on a simplified Euclid
likelihood (6 nuisance params)
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Preliminary results

@ For 3x2pt, we use a simulator
based on a simplified Euclid

likelihood (6 nuisance params)

) Perform mock data analysis on
ACDM model (5 cosmo params)
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m— Swyft (~3 hours)
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Conclusions

@ Euclid will significantly deepen our
understanding of the dark universe
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Conclusions

@ Euclid will significantly deepen our
understanding of the dark universe

¢ To perform cosmological inference from

Euclid data efficiently, we need to go
beyond the MCMC

@9 MNRE provides a highly efficient and
flexible framework to analyse Euclid data

Early commissioning test image, Euclid VIS instrument

THANKS FOR YOUR ATTENTION

g.francoabellan@uva.nl
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BACK-UP



Can we trust our results?

@) Evenif NNs are often seen as "black boxes”, it is possible to perform
statistical consistency tests which are imposible with MCMC
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Can we trust our results?

@) Evenif NNs are often seen as "black boxes”, it is possible to perform

statistical consistency tests which are imposible with MCMC

_ , MCMC
@ Exploit MNRE’s
local amortization:
p(0]x,)

estimates the posterior for
one single observation

!

need to trust
convergence

MNRE with swyft
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p(f]x) Vx ~ p(x)

simultaneously estimates the posteriors
for all simulated observations

!

convergence and
coverage can be tested

Cole+ 22
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https://arxiv.org/abs/2111.08030

Can we trust our results?

€ We can empirically estimate the Bayesian coverage

Empirical coverage, z
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