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ACDM in a nutshell

A spatially flat,

e statistically isotropic and uniform Universe,

filled with ordinary matter,

e cold dark matter

and dark energy Credit: ESA CC BY-SA 3.0 1GO

ACDM contains 6 free parameters (and more derived parameters...)
e h?Q, density of Baryons
o Q). density of Cold Dark Matter
e T reionization optical depth
e Onic observed angular size of the sound horizon at recombination

As amplitude of curvature perturbations (at k& = 0.05Mpc™*)

ns primordial spectral index
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ACDM in a nutshell

A spatially flat,

e statistically isotropic and uniform Universe,

[Physics of the CMB & Astrophysics}
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ACDM in a nutshell

o A ,

e filled with Ordinary matter, [ Inflation (or your favorite alternative) }

e cold dark matter

e and dark energy

ACDM contains 6 free parameters (and more derived parameters...)
e h?Q, density of Baryons
o Q). density of Cold Dark Matter

e T reionization optical depth
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at happens during inflation?
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e Scalar perturbations with comoving
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inflation

; - 10° 4
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horizon and source CMB-anisotropies,
structure formation, PBH formation... 107

e Super-Hubble modes today are frozen and
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What happens during inflation?

e Scalar perturbations with comoving

. 10°
wavenumber k become super-Hubble during — MuH

inflation

; - 10° 4
e Modes with k > H ™! reenter the causal

horizon and source CMB-anisotropies,
structure formation, PBH formation... 107

e Super-Hubble modes today are frozen and

=Y EUEUEUESEU B, /LA RSl Ee—

thought to be unobservable 10° 5 ===
Question: Can super-Hubble modes be mistaken - | '
for non-zero space-time curvature of the e g

background metric?
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Correspondance between curvature and
super-Hubble modes



Curvature in homogeneous FLRW spacetime

Assume a perfectly homogeneous curved FLRW spacetime
e Line-element reads o
57;jd132dI]

d’s = —d’1 + a*(1)
(1 + %&nnwmx”)z

)

e where K is a constant
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e Line-element reads o
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a? a a?

e Effect of spatial curvature on the 4-Ricci scalar

d’s = —d’1 + a*(1)

)

e where K is a constant

4-Ricci scalar is given by

Note that 4-Ricci scalar is a gauge-invariant quantity
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Scalar inhomogeneities in flat FLRW spacetime

e We start with the inhomogeneous metric proposed in Refs.*

ds® = —dr? + a2(7)62<<T’m)5¢jdxidxj.

!Salopek and Bond 1990; Creminelli and Zaldarriaga 2004; Kolb et al. 2005; Lyth, Malik, and Sasaki 2005.
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Scalar inhomogeneities in flat FLRW spacetime

e We start with the inhomogeneous metric proposed in Refs.?
ds® = —dr? + a2(7)62<<T’m)5¢jdxidxj.

e This metric can be viewed as an inhomogeneous realization of a flat FLRW spacetime having a

space-dependent scale factor
b(r, ) = a(r)et ™™

Motivations for this metric
e All inhomogeneities are contained in one scalar function ¢

e Most generic metric in absence of vector- and tensor-type inhomogeneities
e in the gauge where fixed time slices have uniform energy density

e and fixed spatial wordlines are comoving with matter

!Salopek and Bond 1990; Creminelli and Zaldarriaga 2004; Kolb et al. 2005; Lyth, Malik, and Sasaki 2005.
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Cosmology on the local Hubble patch

e We split the curvature perturbation

C(Tv :B) = §(w) + CS(Tv :I:)
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Cosmology on the local Hubble patch

e We split the curvature perturbation

C(m, ) = &(x) + Gs(7, )
e ¢ is conserved through time and contains super-Hubble contributions

1
(2m)°

e (; is time-dependent and contains sub-Hubble perturbations

€@) = o [ K6 — ) ()™

e One may define the scale-factor of the local Hubble patch
a(r, z) = a(r)et™
e and the Hubble radius is the same for all observers
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Stochastic curvature

e In the local Hubble patch, the 4- Ricci scalar becomes

@’ a 6 2 1 2
R:6~2+6d+£ {—3A£—3(V§)ﬂ+---.

a a?
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Stochastic curvature

e In the local Hubble patch, the 4- Ricci scalar becomes

EL2

a2 a [6] 2 1 2
RZG&?“’&{ {‘3Af—3(vg’ﬂ+”“
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Stochastic curvature

e In the local Hubble patch, the 4- Ricci scalar becomes
R—6§+6é+ 81 _2x¢ 1(Vg)2 +
a2 a a2 | 3 3 '
e Effect on the Ricci scalar
e One may be lead to identify
K__gAg_l(Vf)Q Q _ K e 2A5+1(V§)2
T3 3 COUR T T @E? T @?H? |3 3

e ()k is promoted to a stochastic variable
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Moments of the “observed” curvature




Statistics

e (: gaussian random field statistics and vanishing mean

(CR)C(K)) = (2m)° (k + k') Pe (k)
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= ! 2 _ eik‘:c
€)= Gy / d*kO (ks — k) ((K)
S / %@(kv — k) K% (e
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Statistics

e (: gaussian random field statistics and vanishing mean
(CH)C(K)) = (2m)° 6(k + K') P (k)

e From that, one can express

e Realizations of & = (£, A, VE) determine
e

_ 2 1 2
Qx = W{gAf'f‘g(Vf) }
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Examples: ¢, the usual Gaussian variable

e Since ¢ is gaussian, so its mean is 0

1
€)= 5

/ d*kO(ky — k) (C(K)) ™™ =0
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e Since ¢ is gaussian, so its mean is 0

@) = — / KO (ks — k) (C()) €% = 0

(2m)
e And its variance given by its power spectrum
(&%) = (21 k1d°k10 (ko — k1) O (ko — k2) < > glkatla)w

ko
= / dk k™' Pe ()

€

e All higher moments are expressed using Wa,, the number of Wick's contractions between p pairs

n+1 n n 2 '
(€™ =0, (€)=Wan ()", sz:(pél

e The exponential can be expressed as a resummation of all the moments

(58} -£ 5 ()
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Examples: A¢, the laplacian

e |ts mean is also zero, because ¢ is gaussian

e =- [ (;‘)‘ otk, 1 () - = o
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Results for the first 4 moments

5 o(e2
(k) = — oz (K) )
(%) = r;% ((K?) + 80 (K)?) e3€%)
(k) = fagf; (39 (K?) + @ <K>2) e18(6%)
(k) = asiiqs (3 (K2)’ + 1728 (K) (K)* + 7369682 <K>4> £32(6%)

with ) .
K =—ZA6-3(V9)
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Results for the first 4 moments

For the first two moments
(Qk) ~107°

(Q2) — (Qx)? ~1.5x107°
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Results for the first 4 moments

For the first two moments
(Qk) ~107°
Q%) — (k) ~1.5x107°
Using the standardized moments ji,,, the moments divided by the n'" power of the standard deviation

finz2p ~ Wn e(2n2 _477,)<£2>

\/7?* €(2n2—4n) <£2> )

ﬂ”L:2P+1 = nWrLfl (1 + 4n) B
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Probability distribution




Probability distribution

Idea of the computation
Qx can be seen as a non-functional over five stochastic Gaussian variables E = (£, A¢, V&), with

non-diagonal covariance matrix 3.

=Ts-1=

_ °= K g\ e 2
POx) = | 22 60kt e )82
({2x) /(zﬂ)s/Q(S( K e ) Jdets

Nint = 100

40 P.o=1x10"°

P(Qk)
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Conclusion

e Counter-intuitively, inflation predicts a non-zero spatial curvature
e For a scale-invariant scalar power spectrum and not too long inflation: (Qx) ~ 10~°

e but more interestingly: /(Q%) ~ 107° and the distribution is not gaussian

For long inflationary era, <§2> becomes large, therefore constraining the duration of the
inflationary era
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Thank you for your attention
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