
CURL

Spatial Curvature from Super-Hubble Cosmological Fluctuations

Baptiste Blachier, Pierre AUCLAIR, Christophe Ringeval arxiv:2302.14530
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Motivation



ΛCDM in a nutshell

• A spatially flat,

• statistically isotropic and uniform Universe,

• filled with ordinary matter,

• cold dark matter

• and dark energy Credit: ESA CC BY-SA 3.0 IGO

ΛCDM contains 6 free parameters (and more derived parameters...)

• h2Ωb density of Baryons

• h2Ωc density of Cold Dark Matter

• τ reionization optical depth

• θMC observed angular size of the sound horizon at recombination

• As amplitude of curvature perturbations (at k = 0.05Mpc−1)

• ns primordial spectral index
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Inflation (or your favorite alternative)
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What happens during inflation?

• Scalar perturbations with comoving

wavenumber k become super-Hubble during

inflation

• Modes with k ≳ H−1 reenter the causal

horizon and source CMB-anisotropies,

structure formation, PBH formation...

• Super-Hubble modes today are frozen and

thought to be unobservable

Question: Can super-Hubble modes be mistaken

for non-zero space-time curvature of the

background metric?
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Correspondance between curvature and

super-Hubble modes



Curvature in homogeneous FLRW spacetime

Assume a perfectly homogeneous curved FLRW spacetime

• Line-element reads

d2s = − d2τ + a2(τ)
δijdx

idxj(
1 + K

4
δmnxmxn

)2 ,

• where K is a constant

• 4-Ricci scalar is given by

R = 6
ȧ2

a2
+ 6

ä

a
+

6

a2
K .

• Effect of spatial curvature on the 4-Ricci scalar

• Note that 4-Ricci scalar is a gauge-invariant quantity
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Scalar inhomogeneities in flat FLRW spacetime

• We start with the inhomogeneous metric proposed in Refs.1

ds2 = −dτ2 + a2(τ)e2ζ(τ,x)δijdx
idxj .

• This metric can be viewed as an inhomogeneous realization of a flat FLRW spacetime having a

space-dependent scale factor

b(τ,x) ≡ a(τ)eζ(τ,x)

Motivations for this metric

• All inhomogeneities are contained in one scalar function ζ

• Most generic metric in absence of vector- and tensor-type inhomogeneities

• in the gauge where fixed time slices have uniform energy density

• and fixed spatial wordlines are comoving with matter

1Salopek and Bond 1990; Creminelli and Zaldarriaga 2004; Kolb et al. 2005; Lyth, Malik, and Sasaki 2005.
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Cosmology on the local Hubble patch

• We split the curvature perturbation

ζ(τ,x) = ξ(x) + ζs(τ,x)

• ξ is conserved through time and contains super-Hubble contributions

ξ(x) =
1

(2π)3

∫
d3kΘ(kσ − k) ζ(k)eik·x

• ζs is time-dependent and contains sub-Hubble perturbations

• One may define the scale-factor of the local Hubble patch

ã(τ,x) = a(τ)eξ(x)

• and the Hubble radius is the same for all observers

H̃ =
˙̃a

ã
=

ȧ

a
= H
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Stochastic curvature

• In the local Hubble patch, the 4- Ricci scalar becomes

R = 6
˙̃a2

ã2
+ 6

¨̃a

ã
+

6

ã2

[
−2

3
∆ξ − 1

3
(∇ξ)2

]
+ · · · .

• Effect on the Ricci scalar

• One may be lead to identify

K = −2

3
∆ξ − 1

3
(∇ξ)2 , ΩK = − K

ã2H̃2
=

e−2ξ

a2H2

[
2

3
∆ξ +

1

3
(∇ξ)2

]
• ΩK is promoted to a stochastic variable
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Moments of the “observed” curvature



Statistics

• ζ: gaussian random field statistics and vanishing mean〈
ζ(k)ζ(k′)

〉
= (2π)3 δ(k+ k′)Pζ(k)

• From that, one can express

ξ(x) =
1

(2π)3

∫
d3kΘ(kσ − k) ζ(k) eik·x

∆ξ = −
∫

d3k

(2π)3
Θ(kσ − k) k2ζ(k) eik·x

(∇ξ)2 = −
∫

d3pd3q

(2π)6
Θ(kσ − p)Θ(kσ − q) ζ(p)p · q ζ(q) ei(p+q)·x

• Realizations of Ξ ≡ (ξ,∆ξ,∇ξ) determine

ΩK =
e−2ξ

a2H2

[
2

3
∆ξ +

1

3
(∇ξ)2

]
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Examples: ξ, the usual Gaussian variable

• Since ξ is gaussian, so its mean is 0

⟨ξ(x)⟩ = 1

(2π)3

∫
d3kΘ(kσ − k) ⟨ζ(k)⟩ eik·x = 0

• And its variance given by its power spectrum

〈
ξ2
〉
=

1

(2π)3

∫
d3k1d

3k1Θ(kσ − k1)Θ(kσ − k2)

〈
ζ(k1) ζ(k2)

〉
ei(k1+k2)·x

=

∫ kσ

kϵ

dk k−1Pζ(k)

• All higher moments are expressed using W2n the number of Wick’s contractions between p pairs〈
ξ2n+1〉 = 0,

〈
ξ2n
〉
= W2n

〈
ξ2
〉n

, W2p =
(2p)!

p!2p

• The exponential can be expressed as a resummation of all the moments

⟨exp(ξ)⟩ =
〈

∞∑
n=0

ξn

n!

〉
=

∞∑
k=0

〈
ξ2
〉k

2kk!
= exp

(〈
ξ2
〉

2

)

10/14



Examples: ξ, the usual Gaussian variable

• Since ξ is gaussian, so its mean is 0

⟨ξ(x)⟩ = 1

(2π)3

∫
d3kΘ(kσ − k) ⟨ζ(k)⟩ eik·x = 0

• And its variance given by its power spectrum

〈
ξ2
〉
=

1

(2π)3

∫
d3k1d

3k1Θ(kσ − k1)Θ(kσ − k2)

〈
ζ(k1) ζ(k2)

〉
ei(k1+k2)·x

=

∫ kσ

kϵ

dk k−1Pζ(k)

• All higher moments are expressed using W2n the number of Wick’s contractions between p pairs〈
ξ2n+1〉 = 0,

〈
ξ2n
〉
= W2n

〈
ξ2
〉n

, W2p =
(2p)!

p!2p

• The exponential can be expressed as a resummation of all the moments

⟨exp(ξ)⟩ =
〈

∞∑
n=0

ξn

n!

〉
=

∞∑
k=0

〈
ξ2
〉k

2kk!
= exp

(〈
ξ2
〉

2

)

10/14



Examples: ξ, the usual Gaussian variable

• Since ξ is gaussian, so its mean is 0

⟨ξ(x)⟩ = 1

(2π)3

∫
d3kΘ(kσ − k) ⟨ζ(k)⟩ eik·x = 0

• And its variance given by its power spectrum

〈
ξ2
〉
=

1

(2π)3

∫
d3k1d

3k1Θ(kσ − k1)Θ(kσ − k2)

〈
ζ(k1) ζ(k2)

〉
ei(k1+k2)·x

=

∫ kσ

kϵ

dk k−1Pζ(k)

• All higher moments are expressed using W2n the number of Wick’s contractions between p pairs〈
ξ2n+1〉 = 0,

〈
ξ2n
〉
= W2n

〈
ξ2
〉n

, W2p =
(2p)!

p!2p

• The exponential can be expressed as a resummation of all the moments

⟨exp(ξ)⟩ =
〈

∞∑
n=0

ξn

n!

〉
=

∞∑
k=0

〈
ξ2
〉k

2kk!
= exp

(〈
ξ2
〉

2

)

10/14



Examples: ξ, the usual Gaussian variable

• Since ξ is gaussian, so its mean is 0

⟨ξ(x)⟩ = 1

(2π)3

∫
d3kΘ(kσ − k) ⟨ζ(k)⟩ eik·x = 0

• And its variance given by its power spectrum

〈
ξ2
〉
=

1

(2π)3

∫
d3k1d

3k1Θ(kσ − k1)Θ(kσ − k2)

〈
ζ(k1) ζ(k2)

〉
ei(k1+k2)·x

=

∫ kσ

kϵ

dk k−1Pζ(k)

• All higher moments are expressed using W2n the number of Wick’s contractions between p pairs〈
ξ2n+1〉 = 0,

〈
ξ2n
〉
= W2n

〈
ξ2
〉n

, W2p =
(2p)!

p!2p

• The exponential can be expressed as a resummation of all the moments

⟨exp(ξ)⟩ =
〈

∞∑
n=0

ξn

n!

〉
=

∞∑
k=0

〈
ξ2
〉k

2kk!
= exp

(〈
ξ2
〉

2

)

10/14



Examples: ∆ξ, the laplacian

• Its mean is also zero, because ξ is gaussian

⟨∆ξ⟩ = −
∫

d3k

(2π)3
Θ(kσ − k)

〈
k2ζ(k)

〉
eik·x = 0

• But combined with odd powers of ξ, it is non-zero

⟨∆ξξ⟩ = −
∫

d3k1

(2π)3
d3k2

(2π)3
Θ(kσ − k)

〈
k2
1ζ(k1) ζ(k2)

〉
ei(k1+k2)·x = −

∫ kσ

0

dk k2Pζ(k)

• with higher powers of ξ

〈
∆ξξm=2p+1〉 =

. . .

×m ×W(m−1)/2

= − (2p+ 1)!

p!2p

∫ kσ

0

dk k2Pζ(k)
〈
ξ2
〉p

• The exponential can be expressed as a resummation of all the moments
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Results for the first 4 moments

⟨ΩK⟩ = − 5

a2H2
⟨K⟩ e2⟨ξ2⟩〈

Ω2
K

〉
=

1

a4H4

(〈
K2〉+ 80 ⟨K⟩2

)
e8⟨ξ2⟩〈

Ω3
K

〉
= − ⟨K⟩

a6H6

(
39
〈
K2〉+ 19430

9
⟨K⟩2

)
e18⟨ξ2⟩

〈
Ω4

K

〉
=

1

a8H8

(
3
〈
K2〉2 + 1728

〈
K2〉 ⟨K⟩2 + 736682

9
⟨K⟩4

)
e32⟨ξ2⟩

with

K = −2

3
∆ξ − 1

3
(∇ξ)2
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Results for the first 4 moments

For the first two moments

⟨ΩK⟩ ≃ 10−9√
⟨Ω2

K⟩ − ⟨ΩK⟩2 ≃ 1.5× 10−5
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For the first two moments

⟨ΩK⟩ ≃ 10−9√
⟨Ω2

K⟩ − ⟨ΩK⟩2 ≃ 1.5× 10−5

Using the standardized moments µ̃n, the moments divided by the nth power of the standard deviation

µ̃n=2p ≃ Wn e(2n
2−4n)⟨ξ2⟩

µ̃n=2p+1 ≃ nWn−1 (1 + 4n)

√
P∗

2
e(2n

2−4n)⟨ξ2⟩.
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Probability distribution



Probability distribution

Idea of the computation

ΩK can be seen as a non-functional over five stochastic Gaussian variables Ξ ≡ (ξ,∆ξ,∇ξ), with

non-diagonal covariance matrix Σ.

P (Ω̄K) =

∫
d5Ξ

(2π)5/2
δ

(
Ω̄K +

K

k2
σ

e−2ξ

)
e−

1
2
ΞTΣ−1Ξ

√
detΣ

,

−4 −2 0 2 4

Ω̄K/
(
Σω/k

2
σ

)
0

10

20

30

40

P
(Ω̄

K
)

Ninf = 100

P∗ = 1 × 10−3
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Conclusion

• Counter-intuitively, inflation predicts a non-zero spatial curvature

• For a scale-invariant scalar power spectrum and not too long inflation: ⟨ΩK⟩ ≈ 10−9

• but more interestingly:
√

⟨Ω2
K⟩ ≈ 10−5 and the distribution is not gaussian

• For long inflationary era,
〈
ξ2
〉
becomes large, therefore constraining the duration of the

inflationary era
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Thank you for your attention
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