

Numerical investigation of screened scalar-tensor theories in space-based experiments

Hugo Lévy, Joël Bergé, Jean-Philippe Uzan Workshop TUG 2023, LPENS, Paris

Based on arxiv 2209.07226 & 2310.03769

Outline

Introduction to scalar-tensor theories with screening mechanisms

II. Solving nonlinear Klein-Gordon equation on unbounded domains – femtoscope code

III. Can we test scalar-tensor models with space geodesy techniques?

Scalar-Tensor theories

Main motivations for introducing a scalar field in the gravitational sector

1. The dark sector [1]

- Dark Matter \bullet
- Dark Energy ullet
- + inflation paradigm

2. A 'true' scalar field exists in nature

> Discovery of the Higgs boson in 2012

[1] A. Joyce et al, arXiv:1407.0059

[2] J. Velásquez and L. Castañeda, arXiv:1808.05615

3. More fundamental theories

- String theory as an effective 4ulletdimensional theory [1]
- f(R)-theories \equiv scalar-tensor [2]

Laboratory Tests

Atom interferometry [3]

Casimir effect [5]

Eöt-Wash torsion pendulum [4]

Solar System Tests

© Y. Gominet/IMCCE/Nasa

MICROSCOPE [6]

Length scales

Astrophysical Tests

Galaxy rotation curves [7]

Cluster lensing [8]

ASA/Goddard Space Flight Center Scalar radiation in BNS [9]

Laboratory Tests

Atom interferometry [3]

Casimir effect [5]

Solar System Tests

© Y. Gominet/IMCCE/Nasa

MICROSCOPE [6]

Length scales

Astrophysical Tests

Galaxy rotation curves [7]

SA/Goddard Space Flight Center Scalar radiation in BNS [9]

Scalar fields playing *hide-and-seek*

Review of the most popular screening mechanisms [2]			
Classification	Type of Equation	Rule of Thumb	
 Weak coupling Symmetron Damour-Polyakov Large mass Chameleon 	$\Box \phi = \frac{\mathrm{d}V_{\mathrm{eff}}}{\mathrm{d}\phi}$	Occurs in regions of high Newtonian potential	
Large inertiaK-Mouflage	$\Box \phi + A_1 \partial_\mu \left[(\partial \phi)^2 \partial^\mu \phi \right] + A_2 T = 0$	Occurs in regions where the gravitational acceleration is large	
Vainshtein	$6\Box\phi + B_1\left[(\Box\phi)^2 - (\partial_\mu\partial_\nu\phi)^2\right] = B_2T^{\mu}_{\ \mu}$	Occurs in regions where spatial curvature is large	

Take-home messages:

- Different mechanisms to 'screen' scalar fields from local tests of gravity (i.e. recover GR at Solar System scales) ullet
- At the equation level, screening \equiv non-linearity •

[2] A. Joyce et al, Beyond the Cosmological Standard Model, arXiv:1407.0059

Scalar fields playing *hide-and-seek*

Review of the most popular screening mechanisms [2]			
Classification	Type of Equation	Rule of Thumb	
 Weak coupling Symmetron Damour-Polyakov Large mass Chameleon 	$\Box \phi = \frac{\mathrm{d} V_{\mathrm{eff}}}{\mathrm{d} \phi}$ Non-linear Klein-Gordon equation	Occurs in regions of high Newtonian potential	
Large inertiaK-Mouflage	$\Box \phi + A_1 \partial_\mu \left[(\partial \phi)^2 \partial^\mu \phi \right] + A_2 T = 0$	Occurs in regions where the gravitational acceleration is large	
• Vainshtein	$6\Box\phi + B_1\left[(\Box\phi)^2 - (\partial_\mu\partial_\nu\phi)^2\right] = B_2T^{\mu}_{\ \mu}$	Occurs in regions where spatial curvature is large	

Take-home messages:

- Different mechanisms to 'screen' scalar fields from local tests of gravity (i.e. recover GR at Solar System scales) ullet
- At the equation level, screening \equiv non-linearity ullet

[2] A. Joyce et al, Beyond the Cosmological Standard Model, arXiv:1407.0059

Numerical considerations arxiv:2209.07226

Chameleon field equation

Field equation (in the Newtonian limit)

$$\Box \phi = \frac{\beta}{M_{Pl}} \rho - n \frac{\Lambda^{n+4}}{\phi^{n+1}}$$

Free parameters: β , n, Λ Mass distribution: $\rho = \rho(\mathbf{x}, t)$ Unknown: $\phi = \phi(\mathbf{x}, t)$

5th force

$$\vec{F}_{\phi} = -m \frac{\beta}{M_{Pl}} \nabla \phi$$

Point-mass follows geodesics of the Jordan frame metric ≠ Einstein frame geodesics

Chameleon field equation

Field equation (in the Newtonian limit)

$$\Box \phi = \frac{\beta}{M_{Pl}} \rho - n \frac{\Lambda^{n+4}}{\phi^{n+1}}$$

Free parameters: β , n, Λ Mass distribution: $\rho = \rho(\mathbf{x}, t)$ Unknown: $\phi = \phi(\mathbf{x}, t)$

Geometry can be quite complex! ✓ Finite Element Method can deal with complex geometries

[2] A. Upadhye, Dark energy fifth forces in torsion pendulum experiments, arXiv:1209.0211

5th force

$$\vec{F}_{\phi} = -m \frac{\beta}{M_{Pl}} \nabla \phi$$

Point-mass follows geodesics of the Jordan frame metric ≠ Einstein frame geodesics

Chameleon field equation

$$\vec{F}_{\phi} = -m \frac{\beta}{M_{Pl}} \nabla \phi$$

SZ

Not possible to mesh a domain of infinite spatial extent...

Let's compactify* space!

*(i.e. apply a global coordinate transform that will map the whole plane to a bounded domain)

For instance

 \mathbf{X}

Not possible to mesh a domain of infinite spatial extent...

00

$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
$$= (x, y) \mapsto \frac{R_{\text{cut}}}{1 + \|\mathbf{x}\|} (x, y)$$

One idea among (many) others! Caveat: Applying such coordinate transforms leads to unbounded coefficients in the resulting PDE (weight regularisation technique arxiv:2209.07226)

Inspired by Grosch and Orszag (1977) Zenginoglu (2011) Chernogorova et al. (2016) Boulmezaoud (2005)

Study Scripts (from femtoscope import ...)

- \bullet Custom nonlinear solver with line-search
- Implementation of 3 techniques to handle asymptotic boundary conditions
- 1D, 2D and 3D Finite Element Method

• Poisson *Class*

(+ analytical ~ & semi-analytical ~ solutions ~ available)

• Chameleon *Class*

 $(+ few \ analytical \ approximations)$

Application to space geodesy* arxiv:2310.03769

All computations are performed with

*space geodesy: Space geodesy is a scientific discipline that involves precise measurements and analysis of the Earth's shape, gravitational field, and the dynamic behavior of its surface using satellite-based technologies.

Motivations

- A satellite in orbit is subject to both Newtonian attraction and fifth force
- Strong **impact of the local landform** on the scalar field in the **screened regime**
- Mountain ≡ deviation from spherical symmetry
 + analogy with the 'lightning-rod effect' in chameleon and symmetron models [10]
- Can a satellite flying over a mountain distinguish between Newtonian gravity and chameleon gravity?

[10] K. Jones-Smith and F. Ferrer, *Detecting Chameleon Dark Energy via an Electrostatic Analogy*, Phys. Rev. Lett. 108, 221101 – Published 29 May 2012

Credit: NASA/JPL-Caltech

Credit: NASA/JPL-Caltech

w

 $\hat{\mathbf{n}}$

Credit: NASA/JPL-Caltech

Laser Ranging Interferometry: precision of **few tenths of microns**

That's $\sim 10^{-10}$ km!!!

$t = t_0$

×

•

$\frac{d(t_0)}{t}$

igodol

$t = t_0$

×

$d(t_1) > d(t_0)$

ullet

$t = t_1$

×

$t = t_2$

×

$d(t_2) < d(t_1)$

Interpreting the measurement in the framework of Newtonian gravity gives us a gravity map

0

20

-20

-40

-60

Passage of the satellites above the mountain

$+3.267 \times 10^{5}$

H 30

34

32

30

28

anc

Inter-satellite dist

The anomaly is well within the range of GRACE-FO precision!

 $\mathcal{O}(1cm) \gg \mathcal{O}(10^{-5}cm)$

Sources of degeneracy

 $\rho(\mathbf{x}) = \rho_0 [1 + \delta_\rho(\mathbf{x})]$

Is it possible to absorb the chameleon anomaly in a small uncertainty in the satellite's initial state vector δ_x ? a slight variation in the {Earth + Mountain} density δ_o ? (in the framework of Newtonian gravity)

$x_{sat}(t_0) = x_0 [1 + \delta_x]$

Questions

Sources of degeneracy

$\rho(\mathbf{x}) = \rho_0 [1 + \delta_\rho(\mathbf{x})]$

Is it possible to absorb the chameleon anomaly in

- (in the framework of Newtonian gravity)

Questions

a slight variation in the {Earth + Mountain} density δ_{ρ} ? 17

Modified Gravity (Newtonian + chameleon accelerations)

VS

Newtonian Gravity with extra point-mass

Modified Gravity (Newtonian + chameleon accelerations)

Point of mass m_* at coordinate Z_*

VS

Newtonian Gravity with extra point-mass

How to lift the degeneracy?

Idea:

Perform the experiment at different altitudes

How to lift the degeneracy?

Tensions come in...

H Lévy et al, arχiv 2310.03769

The greater the tension, the tighter the potential **constraints** on the modified gravity model at stake

Conclusion

- *femtoscope*: solve semi-linear elliptic PDE using the Finite Element Method on unbounded domains (general purpose code)
- Application to scalar-tensor theories of gravity:

Linear Poisson equation

 $\int \Delta \Phi = 4\pi G \rho(\mathbf{x})$ $\Phi(\mathbf{x}) \longrightarrow 0$ $\|\mathbf{x}\| \to +\infty$

$$\mathbf{a} \sim -\nabla(\Phi + \phi)$$

Gravitational Acceleration

Nonlinear Klein-Gordon equation

- Application to space geodesy: focus on the GRACE-FO configuration
- Can we detect / put constraints on the chameleon model in this context?

With little to **no** uncertainties

Competitive constraints can be derived

• In comparison, lab experiments offer a more controlled environment

hugo.levy@onera.fr

) configuration el in this context?

With uncertainties

Mass distribution inside the Earth

•

Satellite state vector

Dramatically improve our knowledge of the Earth density (unlikely)

Use \neq altitudes (taking advantage of the fact that $a_{\phi} \propto 1/r^2$)

- Application to space geodesy: focus on the GRACE-FO configuration
- Can we detect / put constraints on the chameleon model in this context?

With little to **no** uncertainties

Competitive constraints can be derived

• In comparison, lab experiments offer a more controlled environment

Mass distribution inside the Earth

> Dramatically improve our knowledge of the Earth density (unlikely)

Use \neq altitudes (taking advantage of the fact that $a_{\phi} \propto 1/r^2$)

Thanks for your attention!

•

hugo.levy@onera.fr

With uncertainties

Satellite state vector

References

	지금 것 같은 것 같
[1]	A. Joyce et al, Beyond the Cosmological Standard Model, Physics Reports
[2]	J. Velásquez and L. Castañeda, <i>Equivalence between Scalar-Tensor theor Cosmological Perturbations</i> , Journal of Physics Communications, May 20
[3]	B. Elder et al, <i>Chameleon dark energy and atom interferometry</i> , Phys. Re
[4]	A. Upadhye, Dark energy fifth forces in torsion pendulum experiments, P
[5]	A. Almasi et al, <i>Force sensor for chameleon and Casimir force experiment</i> May 2015
[6]	P. Touboul et al (MICROSCOPE Collaboration), Phys. Rev. Lett. 129, 121102 – Published 14 September 2022
[7]	V. Vikram et al, <i>Astrophysical tests of modified gravity: Stellar and gaseo</i> D, May 2018
[8]	H. Wilcox et al, Simulation tests of galaxy cluster constraints on chamele
[9]	A. Upadhye, J. H. Steffen, <i>Monopole radiation in modified gravity</i> , arXiv:
[10]	K. Jones-Smith and F. Ferrer, <i>Detecting Chameleon Dark Energy via an L</i> 221101 – Published 29 May 2012

s, Vol. 568, 22 March 2015, p. 1-98 *ries and f(R)-gravity: From the action to* 020 v. D, August 2016 Phys. Rev. D, November 2012

ts with parallel-plate configuration, Phys. Rev. D,

us rotation curves in dwarf galaxies, Phys. Rev.

con gravity, MNRAS, October 2016 :1306.6113 [astro-ph.CO], June 2013 *Electrostatic Analogy*, Phys. Rev. Lett. 108,

Backup Slides

$\begin{bmatrix} \text{Find } \boldsymbol{u} : \Omega \to \mathbb{R} \\ \boldsymbol{u} &= 0 \quad \text{on } \Gamma \coloneqq \partial \Omega \end{bmatrix} \begin{pmatrix} 1 \\ \boldsymbol{u} \\ \boldsymbol{u} &= 0 \end{bmatrix}$

FEM Recipe

1. Multiply Eq. (1) by a test function v2. Integrate over Ω

3. Perform an integration by parts

Find $\boldsymbol{u} \in V \coloneqq H_0^1(\Omega)$ $\forall v \in V, \quad \int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla v \, \mathrm{d}x = \underbrace{\int_{\Omega} \boldsymbol{f} v \, \mathrm{d}x}_{a(\boldsymbol{u}, v)} = \underbrace{\int_{\Omega} \boldsymbol{f} v \, \mathrm{d}x}_{l(v)}$

Find $\boldsymbol{u} \in V \coloneqq H_0^1(\Omega) \quad \forall \boldsymbol{v} \in V, \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}$

4. Look for u in a finite-dimensional subspace $V^h \subset V$ (e.g. space of piecewise polynomial functions)

$$\mathbf{u} \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

$$\mathbf{u}(\mathbf{u}, v) = \int_{\Omega} \frac{f v \, \mathrm{d}x}{l(v)}$$

The landscape of basis functions

Find $\boldsymbol{u} \in V \coloneqq H_0^1(\Omega) \quad \forall \boldsymbol{v} \in V, \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{v} \, \mathrm{d} \boldsymbol{x} = \int_{\Omega} \boldsymbol{f} \boldsymbol{v} \, \mathrm{d} \boldsymbol{x}$

Find $u_h \in V_h \subset V$ $\forall i \in [1, N] a(u_h, v_i) = l(v_i)$

Solve A U = L

 $\begin{cases} A_{ij} = a(v_j, v_i) \\ I_{ij} = l(w_j) \end{cases}$

 $a(\mathbf{u}, v)$

continuous

How to lift the degeneracy?

Measuring gravitational redshift using clocks [under investigation]

Idea n°2

Chameleon constraints from MICROSCOPE

M. Pernot-Borràs et al. (2019)

Chameleon constraints from MICROSCOPE

MICROSCOPE can do:

- weak equivalence principle [state of the art]
- generic long-range Yukawa 5th-force [state of the art]
- light dilaton [competitive]
- Lorentz invariance [state of the art]

MICROSCOPE cannot do:

- generic short-range Yukawa 5th-force [not competitive]
- chameleon 5th-force [not competitive]

MICROSCOPE was not designed for testing shortranged modified gravity theories. Recent work challenges the claim on the ability of space experiments to detect chameleon-sourced violations of the WEP sourced by the Earth [2, 3].

Convergence Analysis (FEM)

- at the boundary

Implemented techniques

Compactification : $\Omega \rightarrow \widetilde{\Omega}$ (global coordinate transform) + BC applied at the boundary of the compactified domain.

"Connected" : domain splitting $\overline{\Omega} = \overline{\Omega}_{int} \cup \overline{\Omega}_{ext}$ and Kelvin inversion $\Omega_{ext} \rightarrow \widetilde{\Omega}_{ext}$ + identification of the boundary DOFs $\partial \Omega_{int} \equiv \partial \widetilde{\Omega}_{ext}$.

"ping-pong": domain splitting $\overline{\Omega} = \overline{\Omega}_{int} \cup \overline{\Omega}_{ext}$ and Kelvin inversion $\Omega_{ext} \rightarrow \widetilde{\Omega}_{ext}$ + iterative method with DtN / NtD transmission conditions

Convergence Analysis (FEM)

Building blocks of Scalar-Tensor theories

Metric Tensor $g_{\mu\nu}$

Einstein-Hilbert action in General Relativity

$$S_{EH} = \frac{M_{Pl}^2}{2} \int d^4x \, \sqrt{-g} \, R + \int d^4x \, \sqrt{-g} \, L_m \left(g_{\mu\nu}, \psi_m^{(i)} \right)$$

Building blocks of Scalar-Tensor theories

$$-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi)$$

Scalar Field $\mathbf{\Phi}$

) + $\int d^4x \sqrt{-\tilde{g}} L_m(\Omega^2(\phi)g_{\mu\nu},\psi_m^{(i)})$

$\begin{aligned} & \text{Modified Gravity geodesics} \\ & u^{\mu} \nabla_{\mu} u^{\rho} = -\frac{\partial \ln \Omega}{\partial \phi} \bot^{\mu \rho} \partial_{\mu} \phi \end{aligned}$

General Relativity geodesics

$$\frac{\mathrm{d}^2 x^{\sigma}}{\mathrm{d} \mathrm{s}^2} + \Gamma^{\sigma}_{\mu\nu} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \mathrm{s}} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \mathrm{s}} = 0$$

Derivation can be found in M. Pernot-Borràs 2020, PhD thesis

Modified Gravity geodesics $u^{\mu}\nabla_{\mu}u^{\rho} = -\frac{\partial\ln\Omega}{\partial\phi} \bot^{\mu\rho}\partial_{\mu}\phi$

General Relativity geodesics

$$\frac{\mathrm{d}^2 x^{\sigma}}{\mathrm{d} \mathrm{s}^2} + \Gamma^{\sigma}_{\mu\nu} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \mathrm{s}} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \mathrm{s}} = 0$$