

Violation of the equivalence principle induced by oscillating rest mass and transition frequency and its detection in atom interferometers

Jordan Gué, Aurélien Hees, Peter Wolf

Credit: European Space Agency

SYRTE, Observatoire de Paris

TUG Workshop October 11th 2023

Systèmes de Référence Temps-Espace

ULDM mass interval

From US cosmic vision : new idea for Dark Matter 2017, Arxiv:1707:04951

Ultra Light Dark Matter (ULDM) models

Ultra Light Dark Matter (ULDM) models

 \rightarrow ULDM with $mc^2 < 10 \ eV$ must be <u>bosonic</u> (Pauli exclusion principle)

 \rightarrow Various bosonic ULDM candidates

- Scalar fields (Dilatons,...)
- Pseudo-scalar fields (Axions,...)
- Vector fields (Dark photons,...)

Ultra Light Dark Matter (ULDM) models

 \rightarrow ULDM with $mc^2 < 10 \ eV$ must be <u>bosonic</u> (Pauli exclusion principle)

 \rightarrow Various bosonic ULDM candidates

- Scalar fields (Dilatons,...)
- Pseudo-scalar fields (Axions,...)
- Vector fields (Dark photons,...)
- When $mc^2 \ll eV \rightarrow n/n_k \gg 1 \rightarrow a$ generic scalar field φ can be treated **classically**, i.e as oscillating solution of the Klein Gordon equation in FRLW expanding universe,

$$\varphi = \varphi_0 \cos(\omega_{\varphi} t)$$

 $\hbar \omega_{\varphi} = m_{\varphi} c^2$ in DM rest frame

 $\propto \sqrt{
ho_{DM}}$, the local DM energy density \sim

$$\mathcal{L}_{\phi} \supset \phi \left(\frac{d_{e}}{e^{2}} F^{\mu\nu} F_{\mu\nu} - \frac{d_{g}\beta_{3}}{2g_{s}} G^{\mu\nu} G_{\mu\nu} - \sum_{i=e,u,d} \left(d_{m_{i}} + \gamma_{m_{i}} d_{g} \right) m_{i} \bar{\psi}_{i} \psi_{i} \right)$$

$$\text{T. Damour and T. Donoghue, PRD 82, 084033 (2010) }$$

$$\frac{\text{yields}}{\longrightarrow} i(1 + d_{i}\phi), \quad i = \alpha, m_{e}, \hat{m}, \delta m, \Lambda_{3}$$

Rest mass and transition frequency of an atom depend on *i*

$$m_A, \omega_A = f\left(\alpha, \frac{m_e}{m_p}, \frac{\widehat{m}}{\Lambda_3}, \frac{\delta m}{\Lambda_3}\right) \to f\left(\phi, d_e, d_j - d_g\right), \quad \mathbf{j} = m_e, \widehat{m}, \delta m$$

such that they oscillate as

$$m_{A} = m_{A}^{0} \left(1 + \phi_{0} \left[Q_{M}^{A} \right]_{\phi} \cos(\omega_{\phi} t + \Phi) \right)$$
$$\omega_{A} = \omega_{A}^{0} \left(1 + \phi_{0} \left[Q_{\omega}^{A} \right]_{\phi} \cos(\omega_{\phi} t + \Phi) \right)$$

$$\mathcal{L}_{\phi} \supset \phi \left(\frac{d_{e}}{e^{2}} F^{\mu\nu} F_{\mu\nu} - \frac{d_{g}\beta_{3}}{2g_{s}} G^{\mu\nu} G_{\mu\nu} - \sum_{i=e,u,d} (d_{m_{i}} + \gamma_{m_{i}} d_{g}) m_{i} \bar{\psi}_{i} \psi_{i} \right)$$

$$\text{T. Damour and T. Donoghue, PRD 82, 084033 (2010) }$$

$$\frac{\text{yields}}{\longrightarrow} i(1 + d_{i}\phi), \quad i = \alpha, m_{e}, \hat{m}, \delta m, \Lambda_{3}$$

Rest mass and transition frequency of an atom depend on *i*

$$m_{A}, \omega_{A} = f\left(\alpha, \frac{m_{e}}{m_{p}}, \frac{\widehat{m}}{\Lambda_{3}}, \frac{\delta m}{\Lambda_{3}}\right) \to f\left(\phi, d_{e}, d_{j} - d_{g}\right), \quad j = m_{e}, \widehat{m}, \delta m$$

such that they oscillate as

$$m_{A} = m_{A}^{0} \left(1 + \phi_{0} \left[Q_{M}^{A} \right]_{\phi} \cos(\omega_{\phi} t + \Phi) \right)$$
$$\omega_{A} = \omega_{A}^{0} \left(1 + \phi_{0} \left[Q_{\omega}^{A} \right]_{\phi} \cos(\omega_{\phi} t + \Phi) \right)$$

$$\mathcal{L}_a \supset \frac{a}{f_a} \frac{\sqrt{\hbar c} g_s^2}{32\pi^2} \tilde{G}^{\mu\nu} G_{\mu\nu}$$

Kim and Perez, Arxiv:2205.12988 (2022)

$$\xrightarrow{\text{yields}} m_{\pi}^2 \left(1 - \frac{\hbar c m_u m_d}{2(m_u + m_d)^2} \left(\frac{a}{f_a}\right)^2 \right)$$

Rest mass and transition frequency of an atom depend on m_{π}^2 $m_A, \omega_A = g(m_{\pi}^2) \rightarrow g(a^2, f_a^{-2})$ such that they oscillate as

$$m_{A} = m_{A}^{0} \left(1 + a_{0}^{2} \left[Q_{M}^{A} \right]_{a} \cos(2\omega_{a}t + \Phi) \right)$$
$$\omega_{A} = \omega_{A}^{0} \left(1 + a_{0}^{2} \left[Q_{\omega}^{A} \right]_{a} \cos(2\omega_{a}t + \Phi) \right)$$

$$\mathcal{L}_{\phi} \supset \phi \left(\frac{d_{e}}{e^{2}} F^{\mu\nu} F_{\mu\nu} - \frac{d_{g}\beta_{3}}{2g_{s}} G^{\mu\nu} G_{\mu\nu} - \sum_{i=e,u,d} (d_{m_{i}} + \gamma_{m_{i}} d_{g}) m_{i} \bar{\psi}_{i} \psi_{i} \right)$$

$$T. \text{ Damour and T. Donoghue, PRD 82, 084033 (2010)}$$

$$\stackrel{\text{yields}}{\longrightarrow} i(1 + d_{i}\phi), \quad i = \alpha, m_{e}, \hat{m}, \delta m, \Lambda_{3}$$

Rest mass and transition frequency of an atom depend on *i*

$$m_A, \omega_A = f\left(\alpha, \frac{m_e}{m_p}, \frac{\widehat{m}}{\Lambda_3}, \frac{\delta m}{\Lambda_3}\right) \to f\left(\phi, d_e, d_j - d_g\right), \quad \mathbf{j} = m_e, \widehat{m}, \delta m$$

such that they oscillate as

$$m_{A} = m_{A}^{0} \left(1 + \phi_{0} \left[Q_{M}^{A} \right]_{\phi} \cos(\omega_{\phi} t + \Phi) \right)$$
$$\omega_{A} = \omega_{A}^{0} \left(1 + \phi_{0} \left[Q_{\omega}^{A} \right]_{\phi} \cos(\omega_{\phi} t + \Phi) \right)$$

$$\mathcal{L}_a \supset \frac{a}{f_a} \frac{\sqrt{\hbar c} g_s^2}{32\pi^2} \tilde{G}^{\mu\nu} G_{\mu\nu}$$

Kim and Perez, Arxiv:2205.12988 (2022)

$$\xrightarrow{\text{yields}} m_{\pi}^2 \left(1 - \frac{\hbar c m_u m_d}{2(m_u + m_d)^2} \left(\frac{a}{f_a} \right)^2 \right)$$

Rest mass and transition frequency of an atom depend on m_{π}^2 $m_A, \omega_A = g(m_{\pi}^2) \rightarrow g(a^2, f_a^{-2})$ such that they oscillate as $m_A = m_A^0 \left(1 + a_0^2 \left[Q_M^A\right]_a \cos(2\omega_a t + \Phi)\right)$ $\omega_A = \omega_A^0 \left(1 + a_0^2 \left[Q_\omega^A\right]_a \cos(2\omega_a t + \Phi)\right)$

These oscillations induce an acceleration on the atom A

$$[\vec{a}_A]_{\overline{UFF}} \propto \omega_{osc} \vec{v}_A \left(Q_M^{A} + \frac{\hbar \omega_A^0}{m_A^0 c^2} Q_\omega^{A} \right) \sin(\omega_{osc} t + \Phi), \qquad (\omega_{osc} = \omega_{\phi} \text{ or } 2\omega_a)$$

which violates the UFF since the various [Q] are atom dependent

→ Non-zero differential acceleration measurable in classical test of the UFF (MICROSCOPE) and in atom interferometry *P. Touboul et al. PRL* **129** 121102 (2022)

Historically, use of optical interferometer (e.g Michelson for GW detection)

From De Broglie, any quantum object can be described as a wave, in particular atoms \rightarrow atom interferometry is possible

Historically, use of optical interferometer (e.g Michelson for GW detection)

From De Broglie, any quantum object can be described as a wave, in particular atoms \rightarrow atom interferometry is possible

Beam splitters and mirrors replaced by light pulses. $\rightarrow \frac{\pi}{2}$ pulse separates atoms in 2 wavepackets $\rightarrow \pi$ pulse inverts state \equiv Beam splitter \equiv Mirror

M. Cadoret et al. EPJST, 172 121-136 (2009)

Historically, use of optical interferometer (e.g Michelson for GW detection)

From De Broglie, any quantum object can be described as a wave, in particular atoms -> atom interferometry is possible

Historically, use of optical interferometer (e.g Michelson for GW detection)

From De Broglie, any quantum object can be described as a wave, in particular atoms \rightarrow atom interferometry is possible

Single photon transition gradiometers : AION-10

P. Graham et al. PRL **110** 171102 (2013)

Single photon transition gradiometers : AION-10

p

 \vec{p}_0

 $\hbar \vec{k}_{eff}$ $\hbar \vec{k}_{eff}$

 $2\hbar \vec{k}_{eff}$

Single photon transition gradiometers : AION-10

Use of two isotope species with sequence based on previous AI setup but at same elevation \rightarrow Single Photon transition Isotope Differential "SPID" AI

Use of two isotope species with sequence based on previous AI setup but **at** same elevation \rightarrow Single Photon transition Isotope Differential "SPID" AI

In principle, this setup can be realized using any isotope pair of neutral atoms with stable optical transition, e.g $\binom{88}{38}Sr, \frac{86}{38}Sr); \binom{40}{20}Ca, \frac{44}{20}Ca); \binom{171}{70}Yb, \frac{176}{70}Yb); \binom{196}{80}Hg, \frac{202}{80}Hg)$

 \rightarrow With the same experimental parameters as AION-10, is SPID more sensitive to axion and dilaton couplings ? 7

Results on axion-gluon coupling

Results on axion-gluon coupling

→ MICROSCOPE and SPID experiment would provide the best laboratory constraints on the axion-gluon coupling over multiple orders of magnitude of mass

Results on dilaton couplings

Results on dilaton couplings

Results on dilaton couplings

Low sensitivity of MICROSCOPE (from oscillatory behavior of the field), Stanford and Wuhan

Compared to AION-10, the proposed experiment SPID would be overall more sensitive to dilaton couplings.

Conclusion

- Some of most promising ULDM candidates, dilaton and axion fields, produce oscillating rest mass and transition frequency of atoms.
- Those oscillations produce violation of UFF and could be detected in various types of atom interferometers
- Based on futuristic proposal of AION-10 gradiometer, proposition of variation AI setup, which is overall more sensitive to those couplings than AION-10.

In addition, this new setup would test the UFF with a very interesting constraint on Eötvös parameter, i.e.

$$\eta \sim 10^{-16}$$

Thank you for your attention !

This work was supported by the Programme National GRAM of CNRS/INSU with INP and IN2P3 co-funded by CNES.

Back-up : Rabi oscillations (Raman AI)

The light field couples the states $|g,\vec{p}_0\rangle$ and $|e,\vec{p}_0 + \hbar \vec{k}_{eff}\rangle \rightarrow$ Rabi oscillations between the two states.

Due to interaction with light, the atom undergoes rabi oscillation between ground (g) and excited (e) states.

For a given coupling between atom and light (i.e electric field strength E_0) and Rabi frequency Ω (which depends on E_0), the final state of the atom depends on the time of interaction τ

→ $\Omega \tau = \pi/2$: half of the atoms are transferred into the excited state → $\Omega \tau = \pi$: the full ensemble change state

 $\rightarrow \frac{\pi}{2}$ pulse separates the states : $|g,\vec{p}_0\rangle \rightarrow \frac{1}{\sqrt{2}} (|g,\vec{p}_0\rangle + |e,\vec{p}_0 + \hbar \vec{k}_{eff}\rangle)$

 $\rightarrow \pi$ pulse inverts state : $|g,\vec{p}_0\rangle \rightarrow |e,\vec{p}_0 + \hbar \vec{k}_{eff}\rangle$ and $|e,\vec{p}_0 + \hbar \vec{k}_{eff}\rangle \rightarrow |g,\vec{p}_0\rangle$

- From De Broglie, any quantum object can be described as a wave, in particular atoms → atom interferometry is possible
- Beam splitters and mirrors replaced by light pulses. $\rightarrow \frac{\pi}{2}$ pulse separates atoms in 2 wavepackets $\rightarrow \pi$ pulse inverts state

Back-up : phase contributions

Feynman path integral method to compute phase shift between the 2 wavepackets. This method works only for lagrangian at most quadratic in the position and in the velocity \rightarrow we must make the calculations in the galactic frame (no $\cos(\omega t - \vec{k}.\vec{x})$ term)

- Propagation phase Φ_s : phase accumulated by wavepackets along the trajectory
- Laser phase Φ_{ℓ} : phase factors of laser, to be calculated on light-matter interaction vertices
- Separation phase Φ_u : spatial incoincidence between the two output wavepackets

Multi-photon Raman/Bragg Al

The oscillating acceleration implies a modification of the atom's equations of motion \rightarrow the atom's trajectory oscillates in the interferometer.

Back-up : Phase shifts for different AI config.

Set of experiments

- **MICROSCOPE** : (Existing) classical test of UFF to $\eta = \frac{\Delta a}{a} \sim 10^{-15}$ using $\frac{48}{22}Ti$ and $\frac{195}{78}Pt$
- Stanford tower : (Existing) differential Raman Multi-Photon AI test of UFF to $\eta \sim 10^{-12}$ using ${}^{87}_{37}Rb$ and ${}^{85}_{37}Rb$ $(S_{\phi} \sim 10^{-2} \text{ rad}^2/\text{s})$, *P. Asenbaum et al. PRL* **125** 191101 (2020)
- Wuhan gravimeter : (Existing) single Raman Multi-Photon AI using ${}^{87}_{37}Rb$ ($S_{\phi} \sim 10^{-3} \text{ rad}^2/\text{s}$) Z. Hu et al. PRA **88** 043610 (2020)
- AION-10 : (Future) Gradiometer using ${}^{87}_{38}Sr$ ($S_{\phi} = 10^{-8} \text{ rad}^2/\text{s}$) *L. Badurina et al. PRD* 105 023006 (2022)
- New setup : SPID using $\binom{88}{38}Sr, \frac{86}{38}Sr$; $\binom{40}{20}Ca, \frac{44}{20}Ca$; $\binom{171}{70}Yb, \frac{176}{70}Yb$; $\binom{196}{80}Hg, \frac{202}{80}Hg$ $(S_{\phi} = S_{\phi}^{AION} + S_{\phi}^{EOM})$

Back-up : Dilatonic/axionic charges for various atoms/transitions

Charges (\rightarrow)		Axionic (10^{-3})		Dilatonic (10^{-3})						
Experiment	Species	Q_M	Q_ω	$Q_{M,e}$	Q_{M,m_e}	$Q_{M,\hat{m}}$	$Q_{M,\delta m}$	$Q_{\omega,e}~(10^3)$	$Q_{\omega,\hat{m}}$	$Q_{\omega,\delta m}$
MICROSCOPE	¹⁹⁵ Pt [51]	-69.065		4.278	0.220	85.25	0.340	-	_	
	⁴⁸ Ti [51]	-68.770		2.282	0.253	82.58	0.138		_	
Stanford/Wuhan	⁸⁷ Rb	-68.920	9.30 [27]	2.869	0.234	83.95	0.254	2.34 [52]	18.0 [52]	20.7 [52]
Stanford	85 Rb	-68.924		2.961	0.239	83.98	0.220	1 	-	
AION-10/SPID	40 Ca	-68.715	0	2.409	0.275	82.08	0	2.02 53	0	0
	44 Ca	-68.738	0	2.116	0.250	82.29	0.155	2.02	0	0
	86 Sr	-68.933	0	3.074	0.243	84.06	0.198	2.06	0	0
	87 Sr	-68.932	0	3.027	0.240	84.05	0.215	2.06 54	0	0
	88 Sr	-68.930	0	2.980	0.238	84.03	0.232	2.06	0	0
	¹⁷¹ Yb	-69.054	0	4.114	0.225	85.14	0.308	2.31 [55]	0	0
	¹⁷⁶ Yb	-69.043	0	3.957	0.219	85.05	0.348	2.31	0	0
	$^{196}\mathrm{Hg}$	-69.077	0	4.469	0.224	85.35	0.312	2.81 [53]	0	0
	202 Hg	-69.066	0	4.291	0.218	85.25	0.353	2.81	0	0
All AI	SiO_2	-68.442	—	1.607	0.275	79.62	0.003	—		—

Back-up : AION sensitivity to $1/f_a$

At leading order, optical transition frequency does not depend on $m_{\pi}^2 \rightarrow$ AION-10 independent of a^2 , f_a^{-2}

But recent paper showed that the axion-gluon coupling leads to axion-photon coupling at loop level *C. Beadle et al. Arxiv:2307.10362*

- → Any experiment sensitive to variation of fine structure constant α would be sensitive to $1/f_a$ coupling
- → This correction is negligible for experiments sensitive to variation of rest mass and hyperfine transition frequency (~10⁻⁶ and ~10⁻⁴ smaller respectively)
- → AION-10 becomes sensitive to $1/f_a$ (but sensitivity suppressed by α^2)

nteringssteadhie Megaelerev Everterion

Back-up : Phase noise from EOM

+ Noise from the 1 GHz modulation source

X. Xie et al, Nature Photonics **11** 44 (2017)

J. Hartnett et al, Applied Physics Letters 100 183501 (2012)

$$\Rightarrow S_{\phi}^{EOM}(f) \sim 10^{-13} \left(\frac{f}{Hz}\right)^{-2} \mathrm{rad}^2/\mathrm{Hz}$$

which dominates at very low frequency, compared to gradiometer noise in AION-10 ($S_{\phi} = 10^{-8} \text{ rad}^2/\text{s}$)