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Cosmic Inflation
• Inflation is the most compelling scenario for the early universe.  

• Coherence + (approximate) scale invariance �  phase of (quasi-)de Sitter expansion in 
the early Universe:

� . 
• The simplest model of inflation based on a slowly-rolling scalar field � :

⇒

ds2 = − dt2 + e2Htdx2

ϕ
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S = ∫ d4x −g [ M2
Pl

2
R −

1
2

(∂ϕ)2 − V(ϕ)]
··ϕ + 3H ·ϕ + V′�(ϕ) = 0



The future threshold  �fNL ∼ 1
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• The minimal slow-roll model �  of inflation is very weakly coupled, with 
slow-roll suppressed non-Gaussianity. 

• Reaching the threshold �  in the future will be very informative. 
The non-observation of any  �  would rule out large classes of models; these can be 
distinguished according to: 
1. perturbations generated by a second field;  [Bernardeau and Uzan ’02] +… 
2. subluminal propagation: � ;  [Cheung et al ’07] +… 
3. different symmetry breaking patterns for inflation: solid, super-solid, gaugid…;   
    [Endlich, Nicolis and Wang ’12] +… 
4. dissipative effects: this talk and � :  � ; 
    [Creminelli, Kumar Salehian and LS ’23], [Anber and Sorbo ’09] +… 
5. warm inflation: � ;   [Berghaus, Graham and Kaplan ’19] +… 
6. alternative models to inflation (genesis…).

ℒ = − 1
2 (∂ϕ)2 − V(ϕ)

fNL ∼ 1
fNL ∼ 1

ℒ = P((∂ϕ)2, ϕ)

Δℒ = α
f ϕFF̃ ··φk + (3H + γ) ·φk + ( k2

a2 +V′�′�) φk = . . .

Δℒ = α
16πf

ϕTr[GμνG̃μν]



Outline and summary
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• I will describe a new mechanism that gives rise to dissipation during cosmic inflation. 

• As opposed to � , dissipation takes place on parametrically sub-horizon 
scales, allowing to describe the dynamics in a local manner. 

• The presence of dissipation leads to primordial non-Gaussianity with strength 
� .

Δℒ = α
f ϕFF̃

f eq
NL ≃ O(10)



The model



The model
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• Inflaton �  couples to complex scalar field � charged under (softly-broken) global U(1):  

�   

• �  is a slow-roll potential and only source of breaking of shift symmetry, 
�  

• Last term is the only one breaking U(1):   �      �     the hierarchy �  is 
radiatively stable.

ϕ χ

S = ∫ d4x −g [ 1
2

M2
PlR −

1
2

(∂ϕ)2 − V(ϕ) − |∂χ |2 + M2 | χ |2 − i
∂μϕ

f (χ∂μχ* − χ*∂μχ) −
1
2

m2(χ2 + χ*2)]
V(ϕ)
ϕ → ϕ + const.

χ → eiαχ ⇒ m2 ≪ M2

[Creminelli, Kumar, Salehian and LS ’23]



The model
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• Let's set � . 
• The equations of motion for �  are (to leading order in slow-roll): 

�   

• We can decompose �  and �  as: 

�   . 

• The solution for �  can be obtained in WKB approximation: i.e., we assume that the 
coefficients in the e.o.m. depend so weakly on time that all the time dependence in �  
is encoded in a common phase factor � . [Weinberg ’62] 

ϕ0(t) = ρ f t
χ → a3/2χ

··χ1 −
⃗∇2χ1

a2
− (M2 − m2 +

9H2

4 ) χ1 − 2ρ ·χ2 = 0 ,

··χ2 −
⃗∇2χ2

a2
− (M2 + m2 +

9H2

4 ) χ2 + 2ρ ·χ1 = 0 .

χ1 χ2

χi(t, x) = ∫
d3k

(2π)3
ei ⃗k ⋅ ⃗x [(Fk(t))ij ̂aj( ⃗k ) + (F*k (t))ij ̂a†

j (−
⃗k )]

Fij(t)
Fij(t)

ei ∫ ω±dt

[Creminelli, Kumar, Salehian and LS ’23]



The model
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• Two dispersion relations � , one for each 
additional degree of freedom.  

• For given choices of the parameters, satisfying 

�  , 

there is an instability (� ) for physical 
momenta in the range:  

�  .

ω±

m2 < M2 +
9H2

4
< ρ2 +

m4

4ρ2
< 2ρ2

ω2
− < 0

−m2 + M2 +
9
4

H2 <
k2

a2
< m2 + M2 +

9
4

H2

Instability band

• At � , the amplitude of the �  mode is enhanced by a factor � , where 

�  . 

• The WKB approximation breaks down near the turning points �  and � . 

t2 ω− eπξ

ξ ≃
m4

8HρM2

t1 t2

[Creminelli, Kumar, Salehian and LS ’23]
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WKB solution
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Fk(t) =

( ⃗Q+ , i ⃗Q+)e−i ∫t ω+ + ( ⃗Q− , − i ⃗Q−)e−i ∫t ω−, t < t1

e−iθ1( ⃗Q− , − i ⃗Q−)e ∫t
t1

|ω−| t1 < t < t2

e−iθ1+πξ [( ⃗Q− , − i ⃗Q−)e−i ∫t
t2

ω− + i( ⃗Q*− , − i ⃗Q*−)e+i ∫t
t2

ω−] t > t2

• The final WKB result is:

⃗Q± ≡
1

2 2 ( k2

a2 + μ2)
1/4 (

u±

∓ i
u± )

u± ≡
ω±

k2

a2 + μ2 ± (ρ − m2

2ρ )

1/2

μ2 ≡ ρ2 − M2 −
9H2

4
+

m4

4ρ2

[Creminelli, Kumar, Salehian and LS ’23]



Local response and hierarchies
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• Let us focus on the regime in which the �-particle 
production takes place on parametrically sub-
horizon scales. 

• If: 
�   , 

then the instability window is narrow and 
localized on scales much shorter than Hubble i.e.,  

�   ,             �  .

χ

H ≪ m ≪ M ≲ ρ ≪ f

k
a

∼ M ≫ H H(t2 − t1) ∼
m2

M2
≪ 1

Instability band

• This is a necessary condition in order to avoid non-local responses.  

• Compare instead with �  [Anber and Sorbo ’09]: the instability occurs on scales 
comparable to �  and additional resonances and instabilities are found. [Domcke et al ’20], 
[Caravano et al ’22], [Peloso and Sorbo ’22] 

• As a byproduct, the local approximation enables an analytic control over the dynamics of 
the perturbations.

Δℒ = α
f ϕFF̃

H

[Creminelli, Kumar, Salehian and LS ’23]



Backreaction and slow-roll background evolution
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• The exponentially amplified � modes will eventually backreact on the inflationary 
evolution. 

• At the background level, two main types of backreaction effects: 
_ the large production of � particles extracts energy from the inflaton, providing a new 
source of dissipation that can potentially overcome the Hubble friction in the �  
equation of motion;  
_ the energy density of the produced particles contributes to the Friedmann equations.  

• I will focus on the large-backreaction regime: dissipation due to � production is 
comparable to, or larger than, the standard Hubble friction. 
�  the evolution is dominated by dissipation and deviations from standard slow-roll are 
at least � .   

• This can allow for instance to have inflation on potentials that would otherwise be too 
steep to support slow-roll.

χ

χ
ϕ0

χ

⇒
O(1)

[Creminelli, Kumar, Salehian and LS ’23]



Background equations
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• To be as general as possible, we will allow �  and �  to depend on � : 

�   

• The Friedmann equations are: 

�  

�  

• The inflaton’s background equation is:   

�

m2 M2 X ≡ (∂ϕ)2/(2ρ2 f 2)

M2(X) = M2
0 (c0 + c1

(∂ϕ)2

ρ2 f 2
+ …) , m2(X) = m2

0 (c′�0 + c′�1
(∂ϕ)2

ρ2 f 2
+ …) .

3M2
PlH

2 =
·ϕ2
0

2
+ V + ⟨ | ·χ |2 ⟩ +

1
a2

⟨ |∂i χ |2 ⟩ − (M2 − XM2
X)⟨ | χ |2 ⟩ + iρ⟨χ ·χ* − ·χχ*⟩ +

1
2 (m2 − Xm2

X)⟨χ2 + χ*2⟩

−M2
Pl

·H =
·ϕ2
0

2
+ ⟨ | ·χ |2 ⟩ +

1
3a2

⟨ |∂i χ |2 ⟩ + XM2
X⟨ | χ |2 ⟩ + iρ⟨χ ·χ* − ·χχ*⟩ −

1
2

Xm2
X⟨χ2 + χ*2⟩

1
a3

∂t (1 +
⟨ | χ |2 ⟩
ρ2 f 2

(M2
X − 2ρ2) −

1
2ρ2 f 2

⟨χ2 + χ*2⟩m2
X) a3 ·ϕ0 + V′ �(ϕ) −

im2

f
⟨χ2 − χ*2⟩ = 0

[Creminelli, Kumar, Salehian and LS ’23]



Background equations
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• The field expectation values can be computed using the WKB solution.  For instance: 

�  . 

• Using simple dimensional analysis:  

� ,       � ,          �  .

⟨ | χ |2 ⟩ =
1
2

⟨χ2
1 + χ2

2⟩ =
1

4π2a3 ∫ dk k2 ([Fk(t) ⋅ F†
k (t)]11 + [Fk(t) ⋅ F†

k (t)]22)

⟨ | χ |2 ⟩ ≃
e2πξ

4π2
M2 ⟨χ2 + χ*2⟩ ≃

e2πξ

4π2
m2 −i⟨χ2 − χ*2⟩ ≃

e2πξ

2π2
m2
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• In the limit � , �  becomes the dominant term in the background equations.ξ ≫ 1 ⟨χ2 − χ*2⟩

[Creminelli, Kumar, Salehian and LS ’23]



Background equations
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• The background equations boil down to: 

�  ,                �  ,  

�   . 

• In the large-backreaction regime, � : 

�  . 

• If the energy density is dominated by the inflaton potential: 

�  ,          �              (slow roll).      

• In order for the solution to be an attractor, we require � to be a monotonic function of �  
(this can be generically obtained by choosing �  and � ).

3M2
PlH

2 ≃
·ϕ2
0

2
+ V +

e2πξ

4π2
M4 −M2

Pl
·H ≃

·ϕ2
0

2
+

e2πξ

4π2
M4

3H ·ϕ0 + V′�+
e2πξ

2π2

m4

f
≃ 0

H ·ϕ0 ≲ e2πξm4/(2π2f )

2πξ ≃ ln
2π2f V′�

m4

M2
PlH

2 ≃ V ε ≡ −
·H

H2
≪ 1

ξ ·ϕ0
M2(X) m2(X)

has the same sign of �  (friction)3H ·ϕ0

[Creminelli, Kumar, Salehian and LS ’23]



Perturbations
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• Let us define �  and expand the inflaton’s equation of motion  
(in the decoupling limit): 

�  . 

• The equation for �  is schematically of the form: 

�  , 

where � , � ,  � ,  � ,  � .  

• For each operator, we distinguish: 
�  .

φ(t, ⃗x ) ≡ ϕ(t, ⃗x ) − ϕ0(t)

∇μ (1 +
| χ |2

ρ2 f 2
(M2

X − 2ρ2) −
1

2ρ2 f 2
(χ2 + χ*2)m2

X)∇μϕ − V′ �(ϕ) +
im2

f
(χ2 − χ*2) = 0

φ

𝒟φ(t, ⃗x ) = δ𝒪[χ; t]

𝒪 ⊇ | χ |2 (χ2 + χ*2) ∂t | χ |2 ∂t(χ2 + χ*2) (χ2 − χ*2)

δ𝒪 ≡ 𝒪 − ⟨𝒪⟩φ=0 = δ𝒪S + δ𝒪R

is the response induced by the coupling 
to �  and is a functional of � . At linear 

order: � +…

φ φ

δ𝒪R =
∂⟨𝒪⟩
∂ ·ϕ0

·φ

represents intrinsic inhomogeneities in �  
(stochastic): �  .

𝒪
δ𝒪S ≡ [𝒪 − ⟨𝒪⟩]φ=0

[Creminelli, Kumar, Salehian and LS ’23]



Perturbations
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• The type of response �  depends on the operator. 
• Let us focus on: 

� ,         �  . 

• Non-local responses can lead to memory effects and unwanted large oscillations in the 
background solution. 

δ𝒪R

| χ |2 (χ2 − χ*2)
�  is sensitive to a wide range of scales 
i.e., the response is non-local.
⟨ | χ |2 ⟩ �  gets its leading contribution from 

modes in a narrow range of scales around the 
instability window: the response is local. 

⟨χ2 − χ*2⟩
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[Creminelli, Kumar, Salehian and LS ’23]



Perturbations
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[Creminelli, Kumar, Salehian and LS ’23]
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Local vs. non-local response: numerical solutions.

• Various ways to suppress the non-local operator � : 

_ � , in such a way that:  � ; 

_ moderate `fine tuning’: �  removes �  (and � ) from the equation; 
_ � decays into an extra sector on time scales � . 

| χ |2

2πξ ≫ 1
H ·ϕ0
f 2 ⟨ | χ |2 ⟩

im2
f ⟨χ2 − χ*2⟩

≃
Hρ3

m4
≃

1
8ξ

≪ 1

M2
X = 2ρ2 | χ |2 ∂t | χ |2

χ ≪ H−1



Linearized equation
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• In the local approximation the �  equation reads: 

�  , 

where �  and 

�  . 

• Two scales in the problem: 
_ �  (friction becomes dominant); 
_ �  (freeze-out).  

• The solution for �  is the superposition of homogeneous (vacuum fluctuations) and 
particular solutions. 

• Vacuum fluctuations are subleading in the large-friction limit � . [Lopez Nacir et al ’11]  
I will focus on the particular solution.

φ

··φk + (3H + γ) ·φk + ( k2

a2
+ V′ �′�) φk = −

m2

f
δ𝒪S(k)

𝒪 ≡ − i(χ2 − χ*2)

γ ∼
m2

f
∂⟨𝒪⟩
∂ ·ϕ0

∼
ξm4

πMf 2
e2πξ

k /a ∼ γ
k /a ∼ γH ≫ H

φk

γ ≫ H

[Creminelli, Kumar, Salehian and LS ’23]



Power spectrum



Stochastic noise and induced power spectrum
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• The particular solution to the inhomogeneous equation can be derived using standard 
Green’s function methods: 

�  . 

• The inflaton two-point function is: 

�  . 

• In the local approximation, the noise two-point function �  is 
proportional to a delta-function �  (locality in time) and it is independent of the 
spatial momentum (locality in space): 

�  ,                � .

φ(τ, k) = −
m2

f ∫ dτ′�Gk(τ, τ′�)a(τ′�)2δ𝒪S(τ′�, k)

⟨φk(τ)φk′�(τ)⟩ =
m4

f 2 ∫ dτ′�dτ′�′ �a(τ′ �)2a(τ′�′�)2 Gk(τ, τ′ �)Gk′�(τ, τ′�′�)⟨δ𝒪S(τ′�, k)δ𝒪S(τ′�′�, k′�)⟩

⟨δ𝒪S(τ′�, k)δ𝒪S(τ′�′�, k′�)⟩
δ(τ − τ′�)

⟨δ𝒪S(τ′�, k)δ𝒪S(τ′�′�, k′�)⟩ ≃ (2π)3δ( ⃗k + ⃗k ′�) δ(τ′ �− τ′�′�) H4τ4ν𝒪 ν𝒪 ≃
e4πξ

4π2

M
m

[Creminelli, Kumar, Salehian and LS ’23]



Stochastic noise and induced power spectrum
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• The power spectrum for �  is: 

�   . 

• The smallness of the power spectrum is due to the presence of many independent 
sources that contribute incoherently on sub-Hubble scales. 
[In contrast, the case of axion inflation in the strong-backreaction regime predicts large power for the fluctuations 
simply because the instability continues up to large scales.] 

• For the same reason, the large number also makes the statistics of perturbations close to 
Gaussian (by the central limit theorem) and thus compatible with observations.

ζ = − Hφ/ ·ϕ0

Δ2
ζ ≡

k3

2π2

H2

·ϕ2
0

⟨φkφ−k⟩′� ≃
1

32ξ2 ( γ
πH )

3/2 H4M
m5

[Creminelli, Kumar, Salehian and LS ’23]



Non-Gaussianity



Non-Gaussianity
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• In the local approximation, expanding the �  equation to quadratic order in 
perturbations: 

�   

 

• Three different sources of non-Gaussianity: 
1. inflaton’s self interactions, �  (slow-roll suppressed); 
2. non-Gaussianity induced by the statistics of the noise fluctuation � : 

�  

�    

3. non-Gaussianity sourced by non-linear coupling between �  and �: 
     (i)  by direct coupling between �  and � ; 
     (ii) from non-linear dependence of �  on � .

φ

−∇μ ∇μφ + V′ �′�φ +
1
2

V′�′ �′�φ2 +
1

ρf 2 [m2
X

·φ + (m2
X + m2

XX)
·φ2

2ρf
− m2

X
(∂iφ)2

2ρfa2 ]⟨𝒪⟩ +
1
f (m2 + m2

X

·φ
ρf ) (δ𝒪R + δ𝒪S) = 0

V′�′�′�φ2

δ𝒪S

⟨φk1
φk2

φk3
⟩ = − ( m2

f )
3

∫ dτ1dτ2dτ3a(τ1)2a(τ2)2a(τ3)2Gk1
(0,τ1)Gk2

(0,τ2)Gk3
(0,τ3)⟨δ𝒪S(τ1, k1)δ𝒪S(τ2, k2)δ𝒪S(τ3, k3)⟩

⇒ f eq
NL ≃

40π
9

ξ
m2

M2
≲ 1

φ χ
φ δ𝒪S

δ𝒪R φ

[Creminelli, Kumar, Salehian and LS ’23]

Since �  is the only source of breaking of Lorentz 
symmetries, non-linearly realized general covariance 

and shift symmetry ensure that �  depends on �  
only through the Lorentz scalar � .

·ϕ0(t)

δ𝒪R φ
∂μϕ∂μϕ



Non-Gaussianity from non-linear coupling
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• The quadratic equation of motion for �  in the local approximation: 

�  .  

• Neglecting the homogeneous (i.e., vacuum) solution, 
�   

�  

• Non-gaussianity shapes peak in the equilateral configuration:

φ

φ′�′� + (2H + γ)aφ′ �− ⃗∇2φ + a2V′�′�φ ≃ − a2 m2

f
δ𝒪S +

γ
2ρf [(∂iφ)2−2πξφ′�2] − a

2πξm2

ρf 2
φ′�δ𝒪S

φ = φ(1) + φ(2)

φ(2)
k (τ) = −

1
ρf ∫ dτ′�Gk(τ, τ′�)∫

d3p
(2π)3 [ γ

2
⃗p ⋅ ( ⃗k − ⃗p ) φ(1)

p (τ′�)φ(1)
k−p(τ′�)+πξγ ∂τ′�φ(1)

p (τ′ �)∂τ′�φ(1)
k−p(τ′ �)+a(τ′�)

2πξm2

f
∂τ′ �φ(1)

k−p(τ′�)δ𝒪S(τ′�, p)]

�φ′�2 �(∂iφ)2

�φ′�δ𝒪S

Vanishing in the 
squeezed limit 
� , 
consistently with the 
fact that there is an 
attractor solution for 
the dynamics which is 
controlled by a single 
clock, � .

k3 ≪ k1, k2

ϕ0(t)

[Creminelli, Kumar, Salehian and LS ’23]



Non-Gaussianity from non-linear coupling

• Amplitudes of non-Gaussianity from non-linear coupling:

The linear growth in 
�  is a 
consequence of the 
non-linearly realized 
Lorentz symmetries 
and is model-
independent. 
  
This is similar to what 
happens when 
considering models 
where the inflaton has 
a reduced speed of 
propagation, where 
� .

f eq
NL ≃ − γ

4H

f eq
NL ∝ 1

c2
s

The interaction of the 
inflaton with the noise 
can generate �
few� .  

As opposed to the 
blue curve, this is 
model-dependent.

f eq
NL ≃

× O(10)

Luca Santoni

[Creminelli, Kumar, Salehian and LS ’23]
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Conclusions



Summary
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• Model of dissipative inflation via scalar particle production. 

• As opposed to previous implementations based on a coupling to gauge fields, in our 
model particle production takes place on parametrically sub-horizon scales:  
_ avoids non-local response and memory effects; 
_ good analytic control on the dynamics and the predictions; 
_ makes the statistics of the perturbations naturally close to Gaussian, by virtue of the 
central limit theorem and the large occupation on short scales.  

• Robust against radiative corrections because of (approximate) �  and shift symmetries. 
  

• First robust explicit realization of the EFT of dissipative inflation. [Lopez Nacir et al ’11] 

• Proof of concept that dissipative inflation is not an exclusive feature of couplings to 
gauge fields, but can be realized more in general.  

U(1)



Open directions
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• Tensor modes 
• Primordial black holes 
• Thermalization and warm inflation 
• Fermions



Backup slides



WKB solution
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• To find the full solution for � : 
_ we first solve with WKB in the regions far from the turning points (� , �  
and � ) where � ; 
_ we perform an analytical continuation and match the coefficients:

Fij(t)
t ≪ t1 t1 ≪ t ≪ t2

t ≫ t2 | ·ω−/ω2
− | ≪ 1

[Landau and Lifshits, vol. 3] 
[Dufaux et al ’06]

[Creminelli, Kumar, Salehian and LS ’23]



Vacuum fluctuations
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• The homogeneous solution to the linearized �  equation: 

�   

is 

�  . 

(deviations from scale invariance neglected.) 

• Demanding the correct Bunch—Davies initial condition at �  yields 
�   

• The solution at late times (� ) is  

�  . 

• Increasing the friction will exponentially damp the homogeneous solution.

φ

··φk + (3H + γ) ·φk + ( k2

a2
+ V′ �′�) φk = −

m2

f
δ𝒪S(k)

φk ≃ τα [A 𝖧(1)
α (−kτ) + B 𝖧(2)

α (−kτ)], α ≡
3
2

+
γ

2H

k |τ0 | ≫ γ/H
A = 0, B ∼ τ−γ/2H

0 .

τ → 0

φk(τ → 0) ∝ ( kτ0

γ/H )
− γ

2H

e− γ
2H



Non-Gaussianity from non-linear coupling
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3. non-Gaussianity sourced by non-linear coupling between �  and �: 
     (i)  by direct coupling between �  and � ; 

     (ii) from non-linear dependence of �  on � : 

                                    

φ χ
φ δ𝒪S

δ𝒪R φ

At this order, �  can be 
taken Gaussian. A change 

in �  induces a variation in 
the mean and the variance.

𝒪
·ϕ0

Since �  is the only 
source of breaking of 

Lorentz symmetries, non-
linearly realized general 

covariance and shift 
symmetry ensure that �  

depends on �  only 
through the Lorentz scalar 

� .

·ϕ0(t)

δ𝒪R
φ

∂μϕ∂μϕ

δ𝒪R = 𝒪[ −∂μϕ∂μϕ] − 𝒪 |φ=0

= 𝒪[ −∂μϕ∂μϕ] − ⟨𝒪⟩|φ=0 − δ𝒪S
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1
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∂ ·ϕ0 ( ·φ −
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1
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·φ2+
1

2ν𝒪
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