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Cosmic Inflation

e |nflation is the most compelling scenario for the early universe.
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e Coherence + (approximate) scale invariance = phase of (quasi-)de Sitter expansion in
the early Universe:
ds? = — dr? + e*H'dx>.

e The simplest model of inflation based on a slowly-rolling scalar tield ¢:

V(9)
A W _
Q) S = d4x — —R ——(0 2 V
J V=E | 5HR =209 = V()
\J ¢+ 3Hp + V'(p) =0
S Pend reheating "
Ao
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The future threshold fyy ~ 1

e The minimal slow-roll model & = —%((345)2 — V(@) of inflation is very weakly coupled, with
slow-roll suppressed non-Gaussianity.

e Reaching the threshold fy; ~ 1 in the future will be very informative.
The non-observation of any fy; ~ 1 would rule out large classes of models; these can be
distinguished according to:
1. perturbations generated by a second field; [Bemardeau and Uzan '02] +...
2. subluminal propagation: & = P((0¢)?, ¢); [Cheungetal 07] +..
3. different symmetry breaking patterns for inflation: solid, super-solid, gaugid...;
[Endlich, Nicolis and Wang '12] +...

4. dissipative effects: this talk and AZ = %qﬁFF: ¢+ CH+y)p, + (z—j+ V”) Op=...;

[Creminelli, Kumar Salehian and LS ’23], [Anber and Sorbo '09] +...

. . ] o«
5.warm inflation: AZ = Tonr

6. alternative models to inflation (genesis...).

ngI’[GWGW]; [Berghaus, Graham and Kaplan "19] +...
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Outline and summary

e | will describe a new mechanism that gives rise to dissipation during cosmic inflation.

o Asopposedto AZ = %qﬁFF, dissipation takes place on parametrically sub-horizon

scales, allowing to describe the dynamics in a local manner.
 The presence of dissipation leads to primordial non-Gaussianity with strength

24 = 0(10).
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The model



The model

[Creminelli, Kumar, Salehian and LS '23]

e |nflaton ¢ couples to complex scalar field y charged under (softly-broken) global U(1):

1 1 d,¢ 1
_ 4 — Y 22 2 . 2 2 2 . H . Y ) 2
S—Jd xX\/—8 [2Mp1R (04 = V(@) = 191"+ M*| x| = (xo'y* — y*oty) S+ 1)

e V(@) is a slow-roll potential and only source of breaking of shift symmetry,

¢ — ¢ + const.
o Lastterm isthe only one breaking U(1): y = e*y = the hierarchy m? < M?is
radiatively stable.
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The model

o let'ssetgy(t) =pft.
e The equations of motion for y — a*?y are (to leading order in slow-roll):

Vz)( 9H?
L (Mz—m +T>)(1—2,0)(2—0

[Creminelli, Kumar, Salehian and LS '23]

S
. V2)(2 OH* :
X2~ 2 (M2+m +—4 X+ 2py,=0.

e \We can decompose y; and y, as:

&Pk~ T
;(i(t,x)=[ et [(Fk(t))y a(k) + (FH(1)d! (= k)

(2m)?

 The solution for F;(#) can be obtained in WKB approximation: i.e., we assume that the

coefficients in the e.o.m. depend so weakly on time that all the time dependence in F(?)
is encoded in a common phase factor R
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The model

[Creminelli, Kumar, Salehian and LS '23]

e Two dispersion relations w,, one for each
additional degree of freedom. y

Instability band

e For given choices of the parameters, satisfying
2 , o1, m’ 2
m <M +——<p°+—<2p~,
4 4p?
there is an instability (w? < 0) for physical

VA
momenta in tge rangii2 tl\\_/t2 \/ \/ \/ \/

O
—m?+M?*+—H?* < — <m?*+M?*+—-H?*.
4 a? 4

AN

e Att,, the amplitude of the w_ mode is enhanced by a factor €™, where

4
&~

m
SHpM?

e The WKB approximation breaks down near the turning points t; and #,.
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WKB solution

e The final WKB resultis:
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[Creminelli, Kumar, Salehian and LS '23]
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Local response and hierarchies

[Creminelli, Kumar, Salehian and LS '23]

Let us focus on the regime in which the y-particle

€

production takes place on parametrically sub- ’
horizon scales.

Instability band

H<xm<<MSpf,
then the instability window is narrow and

|
localized on scales much shorter than Hubble i.e., 2 2

m
—~M>H , Hit,—t)~—<1.
a (& =1) M?

This is a necessary condition in order to avoid non-local responses.

Compare instead with AZ = %ngF [Anber and Sorbo '09): the instability occurs on scales

comparable to H and additional resonances and instabilities are found. [Domcke et al 20],
[Caravano et al '22], [Peloso and Sorbo '22]

As a byproduct, the local approximation enables an analytic control over the dynamics of

the perturbations. 4
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Backreaction and slow-roll background evolution

[Creminelli, Kumar, Salehian and LS '23]

The exponentially amplified y modes will eventually backreact on the inflationary
evolution.

At the background level, two main types of backreaction effects:
_the large production of y particles extracts energy from the inflaton, providing a new
source of dissipation that can potentially overcome the Hubble friction in the ¢,

equation of motion;
_the energy density of the produced particles contributes to the Friedmann equations.

| will focus on the large-backreaction regime: dissipation due to y production is
comparable to, or larger than, the standard Hubble friction.
= the evolution is dominated by dissipation and deviations from standard slow-roll are

at least O(1).

This can allow for instance to have inflation on potentials that would otherwise be too
steep to support slow-roll.
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Background equations

[Creminelli, Kumar, Salehian and LS '23]

e To be as general as possible, we will allow m? and M? to depend on X = (9¢)*/(2p> f?):

2 2
M2(X)=M§(co+cl(a¢) +...), mz(X)=mg<c(’)+c’(a¢) +>

p2f2 1p2f2
e The Friedmann equations are:
P . 1 o L :
SMEH = 22+ Ve (1717 +— 10 1) = (M? = XMR) Ly 1) + ip o = jur) + - (m® = Xm) G+ 22)
211 ¢% e 12 1 2 2 2 . o .k 1 2 2 *9)
~MpH = ==+ (12170 + 250 1) + XMiClx 1) + ip Qo™ — ™) = S Xmy(r” +207)

e The inflaton’s background equation is:

I (Lx1?) . - o m .
—9, <1+ o Mi =200 - 2>m§) @ | + V) ==~ ) =0
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Background equations

[Creminelli, Kumar, Salehian and LS '23]

 The field expectation values can be computed using the WKB solution. For instance:

| 1
APy =508 +23) = 755 [dkkz([m) F{1 + IR0 F{0l ).

e Using simple dimensional ana|y5|s:

e 2 2 2 e 2 2 e’ 2

s M-, + y*) ~ m-, —1 — ~ m- .

(xl?) = (X~ +x%) = X" —x°) >

(IxI*) (—i(x* — x*%))
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o Inthelimité > 1, {y* — ) becomes the dominant term in the background equations.
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Background equations

[Creminelli, Kumar, Salehian and LS '23]

The background equations boil down to:

12 2ré 12 2ré
C . c
SMAH? ~ — + V+ —M*, ~MZ%H =~ LRy
472 Y
3Hp, + V'+ S 0
0 y f — .

T2
k has the same sign of 3Hg, (friction)

In the large-backreaction regime, Hq50 <S e¥om* 1 2x*f):
21°f V'’

2 o= In| ==

If the energy density is dominated by the inflaton potential:

H
MI%IH2 ~V, = — ﬁ < 1 (slow roll).

In order for the solution to be an attractor, we require £ to be a monotonic function of ¢,
(this can be generically obtained by choosing M*(X) and m?*(X)).
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Perturbations

N N [Creminelli, Kumar, Salehian and LS "23]
e letusdefine p(t, x') = ¢(¢t, X)) — ¢y(t) and expand the inflaton’s equation of motion

(in the decoupling limit):

P2
Vv (1+p2f2(MX_2p)_

. 2
2+ )(*z)m)%> vig | — vig) + %( V2= =0

202 f2

e The equation for ¢ is schematically of the form:
Dot, X)) =60[y;t],

where 0 2 |y 1%, 2+ 1), 0,1x1%, 02+, (2 =x™.

e For each operator, we distinguish:

50 = 0 — (0),,_o = 505+ 50y

represents intrinsic inhomogeneities in @ j k is the response induced by the coupling
(stochastic): 605 = [0 — (O)] - to @ and is a functional of ¢. At linear
- 00
order: 60, = < >g’o+...

o
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Perturbations

[Creminelli, Kumar, Salehian and LS '23]

e The type of response 60, depends on the operator.
e |etusfocuson:

x> =1,
NG

(1 x1*) is sensitive to a wide range of scales j (x> = x"*) gets its leading contribution from

i.e., the response is non-local. modes in a narrow range of scales around the
| — — instability window: the response is local.
e — EE—
(IxI*) (—ilx* = x™))
05— — ———— 05 ‘
04; 0.4%
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g ] g it
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e Non-local responses can lead to memory effects and unwanted large oscillations in the
background solution.

1
Luca Santoni N @
\ | 4%



Perturbations

[Creminelli, Kumar, Salehian and LS '23]

0.0 0.5 1.0 L5 2.0 0.0 0.5 1.0 1.5 2.0
Ht Ht

Local vs. non-local response: numerical solutions.

e \arious ways to suppress the non-local operator |)(|2:

et Hpd 1
_27& > 1,in such a way that: — ~ ~ < 1;
- omt o 8

_ moderate ‘fine tuning’: M)% = 2p? removes |)(|2 (and (3t|)(|2) from the equation;

_ y decays into an extra sector on time scales <« H™.
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Linearized equation

[Creminelli, Kumar, Salehian and LS '23]

In the local approximation the ¢ equation reads:
k? m?
éﬂ.k + (3H+ y)qﬂk -+ ; -+ V” §0k = — 75@S(k) ,

where 0 = — i(y*> — ) and
m? 0(0) Em*

foogy  mMf?

eZﬂf .

Two scales in the problem:
_kl/a ~ y (friction becomes dominant);

_kla ~/yH > H (tfreeze-out).

The solution for ¢, is the superposition of homogeneous (vacuum fluctuations) and
particular solutions.

Vacuum fluctuations are subleading in the large-friction limit y > H. [Lopez Nacir et al '11]
| will focus on the particular solution.
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Power spectrum



Stochastic noise and induced power spectrum

[Creminelli, Kumar, Salehian and LS '23]

* The particular solution to the inhomogeneous equation can be derived using standard

Green’s function methods:
2

p(1,k) = — m? [dT/Gk(T, )a(t)*60 (7, k) .

e The inflaton two-point function is:
4

m R/ N2 N2 / 7 / 7N,
(P (D@ (7)) = f_2 Jdr dr”a(7') a(t")” Gi(z, )G (1, 7")(00 (7', k)oO (7", k')) .

e Inthe local approximation, the noise two-point function (60(7’, k)60 (", k")) is

proportional to a delta-function 6(z — 7’) (locality in time) and it is independent of the
spatial momentum (locality in space):

; ; A M
(607, k)60(1", k) ~ 2r)’6(k + k) 6(x' — ") H*t v, Vg Z ——.
7w m
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Stochastic noise and induced power spectrum

[Creminelli, Kumar, Salehian and LS '23]

e The power spectrum for { = — Hgo/(ﬁo is:

aH

K H> 1 [y \""H*M
21 32¢ m
* The smallness of the power spectrum is due to the presence of many independent

sources that contribute incoherently on sub-Hubble scales.

[In contrast, the case of axion inflation in the strong-backreaction regime predicts large power for the fluctuations
simply because the instability continues up to large scales.]

e Forthe same reason, the large number also makes the statistics of perturbations close to
Gaussian (by the central limit theorem) and thus compatible with observations.

i
el
Luca Santoni V. @



Non-Gaussianity



Non-Gaussianity

[Creminelli, Kumar, Salehian and LS '23]

e |nthe local approximation, expanding the ¢ equation to quadratic order in
perturbations:

v V”go+V”ga+lV’”¢2+L mg( + (mg + mg )CL2 2(6’@2 (@)+l<m +m2¢ (60 + 80) =0
g 2 pr | T T g T N f Yof)

e Three different sources of non-Gaussianity:
1. inflaton’s self interactions, V"¢? (slow-roll suppressed);
2. non-Gaussianity induced by the statistics of the noise fluctuation 604:

3
m2
<€0k1€0k2€0k3> = = (7) JdTld72d73a(’51)261(72)20!(73)2le(0,71)Gk2(0,72)Gk3(0sT3)(5@S(T1, k)60 (2, ky)60(73, k3))

eqN4OT[ m?2 i

3. non-Gaussianity sourced by non-linear coupling between ¢ and y:

(i) by direct coupling between ¢ and 60y;

Since ¢hy(2) is the only source of breaking of Lorentz
symmetries, non-linearly realized general covariance

and shift symmetry ensure that 60y depends on ¢
only through the Lorentz scalar d,¢0"¢.

(ii) from non-linear dependence of 60 on @.

4 \
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Non-Gaussianity from non-linear coupling

[Creminelli, Kumar, Salehian and LS 23]

e The quadratic equation of motion for ¢ in the local approximation:

2 y

2
@"+ (2H+ y)ap' — quﬂ + Cl2V”q0 ~ — a2m75@5 + 2_f [(0i¢)2—2n’§§0’2] —a
0,

2ném

pf?

p'00; .

e Neglecting the homogeneous (i.e., vacuum) solution,
1 2

pP@) = - —fjdrfcka, r')[ [5 P (K =P af @l vty 0.9, )00 aE) 0,01, 504'p)

P

e Non-gaussianity shapes peak in the equilateral configuration:

Vanishing in the
squeezed limit

ky < ki, ks,
consistently with the
fact that there is an
attractor solution for
the dynamics which is
controlled by a single

clock, ¢y().

B ——
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Non-Gaussianity from non-linear coupling

e Amplitudes of non-Gaussianity from non-linear coupling:

The interaction of the
inflaton with the noise
can generate f [ ~
few X O(10).

As opposed to the
blue curve, this is
model-dependent.

B —————

501

[Creminelli, Kumar, Salehian and LS '23]

------------------
=
-
-

el The linear growth in
- v .
Fo === ¢ ~
I = Tagisa

consequence of the
non-linearly realized
Lorentz symmetries

~_ andis model-
independent.

] This is similar to what
] happens when
considering models
where the inflaton has
a reduced speed of
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Conclusions



Summary

Model of dissipative inflation via scalar particle production.

As opposed to previous implementations based on a coupling to gauge fields, in our
model particle production takes place on parametrically sub-horizon scales:

_avoids non-local response and memory effects;

_ good analytic control on the dynamics and the predictions;

_ makes the statistics of the perturbations naturally close to Gaussian, by virtue of the
central limit theorem and the large occupation on short scales.

Robust against radiative corrections because of (approximate) U(1) and shift symmetries.

First robust explicit realization of the EFT of dissipative inflation. [Lopez Nacir et al 1]

Proof of concept that dissipative inflation is not an exclusive feature of couplings to
gauge fields, but can be realized more in general.
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Open directions

Tensor modes

Primordial black holes
Thermalization and warm inflation
Fermions
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Backup slides



WKB solution

[Creminelli, Kumar, Salehian and LS '23]

e To find the full solution for F(?):
_ we first solve with WKB in the regions far from the turning points (t < |, t; K t < 1,
and t > t,) where |@_/w?| < 1;
_we perform an analytical continuation and match the coefficients:

e—ifdtw_ /\ e-|-fdt|w_ |/—\ e—|-ifdtw_

W —— >
e—zfdtw_

[Landau and Lifshits, vol. 3]
[Dufaux et al '06]
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Vacuum fluctuations

e The homogeneous solution to the linearized ¢ equation:

k? m?
¢+ GH +y)p; + ot V' o = — 7565(16)
IS
or = 7 [AH(=k7) + BHP (=), a=2 4t
“ ’ 2 2H

(deviations from scale invariance neglected.)

e Demanding the correct Bunch—Davies initial condition at k|7, | > y/H yields
A =0, BNTO_Y/ZH.
e The solution at late times (z — 0) is
kT,

T—->0) x| — e 2
@i ) <y/H>

* |ncreasing the friction will exponentially damp the homogeneous solution.
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Non-Gaussianity from non-linear coupling

[Creminelli, Kumar, Salehian and LS '23]

3. non-Gaussianity sourced by non-linear coupling between ¢ and y:

(i) by direct coupling between @ and 60;

(ii) from non-linear dependence of 60, on @:

Since ¢ () is the only
source of breaking of
Lorentz symmetries, non-
linearly realized general
covariance and shift

symmetry ensure that 60,

depends on ¢ only
through the Lorentz scalar

0,00".

i

At this order, O can be
taken Gaussian. A change

in ¢o induces a variation in
the mean and the variance.

L

50y = Ol /=0,40"4] = 01,

= 01y /=0,$0"}] = (O)],= — 50
L KO =(0))

_ 5(@)(\/—aﬂ¢aﬂ¢) o= (O 5 PS50+ ...
HOY (. 0\ 10%06) , 1 oy,

= - — 5O+...
oo <“” 2pfa2>+2 oir | 20, 59,00t
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