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Motivation

Observation of black holes and neutron stars: a breakthrough

at their ringdown
(LIGO/Virgo)

GW signals from binaries

phase

Image of M87 black hole with
its light ring (from array of radio

telescopes, EHT)

Observation of star trajectories
orbiting SgrA central black hole
(GRAVITY)

- Alternatives to GR black holes and stars as precise rulers of departure from GR!?

- Other compact objects like wormholes!?




No hairs in GR

Gravitational collapse ->
® Black holes eat or expel surrounding matter
Their stationary phase is characterised by a limited number of charges

No details about collapse

Black holes are bald

» No hair theorems/arguments dictate that adding degrees of freedom lead to
trivial (General Relativity) or singular solutions.

» E.g. in the standard scalar-tensor theories BH solutions are GR black holes
with constant scalar.
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Schwarzschild solution

* Schwarzschild solution (static and spherically symmetric):

2 o, dr’ 2 102 _ _%
ds® = — f(r)dt —l—m—l—r dQ*, f(r)=1 'r

* The zero of f(r) is the horizon of the black hole (r, = 2M).

» An event horizon is a surface of no return. Nothing can escape the event
horizon.

%

An interior of the event horizon hides the curvature singularity at r = 0.
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Kerr solution

~

Kerr'63
» Rotating vacuum black holes in General Relativity are described by the Kerr
metric.
» In Boyer-Lindquist coordinates:
. 5 . 5 A
ds? = — (1 = 2?) d2 — 4“M;§’m ! dtdp + 8122 O 107 + a®)? — @ Asin® 0] d?

(&

2

-+ %drz + p2d6?

where M is the mass, a is the angular momentum and
p? =12+ a’cos’d

A=r’+a*—2Mr

* A ring singularity at p = v/72 +a2cos20 =0, i.e.
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Properties of the Kerr metric

The metric is stationary and axi-symmetric, which corresponds to 2 Killing
directions

g(t) — 8t and g(go) — 890

The spacetime is circular, i.e. symmetric under the reflection (¢, ) — (—t, —¢),
because the Killing fields verify the condition

[ Ety N () Nty = ) N E(p) NdE(p) =0 J

The Kerr spacetime also admits a nontrivial Killing 2-tensor K verifying the
equation

VK0 =0.

This defines a third nontrivial constant of motion along geodesics (Carter's
constant). The geodesic equations thus reduce to a first order system.



Important surfaces in the Kerr metric

Ring singularity

Ergoregion -Inner horizon

Event horizon Static limit

from d'Inverno's book



How to construct exact black hole solutions
in modified gravity!?

Conformal
symmetry




Horndeski theory Horndeski’ 1974

S:/d4CL'F[9,89,829,839,...90,890,8290,8390,...] » E[g,89,829,¢,8g0,82<,0] =0

4 wp )
Gz(X, ¢)7 G3(X7 ¢)7 G4(X7 ¢)7 G5(X7 ¢) X = 0up0"¢
Lo = G2 (X, 9)
‘C3::<?3()(Nﬁ)[mﬁ
L1 = Ga(X,8) R+ Gax(X,6) [(O¢)° — (VV9)’]
| L5 =Gox (X,0)[(06)° ~308(VV9)’ +2(VV)’| ~ 6G5 (X,6) GuV'V's

Deffayet+'09'11
Kobayashi+'1l1l



Degenerate higher order Scalar-Tensor theories (DHOST)

/

Langloisé&Noui, Crisostomi+'1l6
S = / d*zv/—g ( (¢, X)R + K(¢,X) — G3(¢, X)0g + Z Ai(¢, X)L;

) N
K N +Sm [g;u/a wm] /

['1 — ¢uv¢uua ['2 — (D¢)27 £3 — ¢,u,z/¢'u¢l/|:|¢a
[,4 — ¢,u,¢y¢'ua¢uaa ['5 — (¢uv¢“¢y>2
— Qbﬂqbu

* One subclass of DHOST (subclass la) is phenomenologically interesting [Langlois,

Noui; Crisostomi+'1l6]:
A2 — A2 (Ala A3)

A4 — A4 (Ala A3)
As = A5 (A1, As)



From DHOST to DHOST

Under a disformal transformation

9w — C(9, X)guv + D(¢, X)0,00, ¢

[ DHOST $ DHOST J [Achour+,Crisostomi+'16]

More precisely,

SprOST G, 9] = SpHOST|g1 + D(X)8,00,9, 9] = SpHOST|[gur> D)

N =T o

gDHOST [gum d)] + Smatter[g;wa \Ilmatter] SDHOST [glﬂ/? ¢] + Smatter[guu, \Ilmatter]

k Coupling to matter is different: we get a different theory /

see also a talk by Hugo Roussille

for Non-linear gravitational waves in DHOST



Hairy solutions in ST theories

—_----..

N

Shift symmetry ¢ — ¢+const.
Parity symmetry ¢ — —¢

Ex.: GQ(X), G4(X), F4(X)
k-essence, G*¥0,,¢0,,¢

Other cases:
no parity symmetry
no shift symmetry

Conformal “symmetry”
Ex.: (0¢)? + 1 R¢? JJRECI

Rotating stationary
Non-stealth

No conformal
invariance



Shift symmetry



Shift symmetry and time dependence

The ansatz ¢ = qt + ...

S = /d4£ (gu,,, 09, ...>$<8¢, 0%, ) :{> goes through EOMs, leaving no

t-dependence (only q).

T, is t-independent.

Static configurations
with time-dependent scalar

Shift symmetry of the theory implies conserved cur-
rent V,J# = 0. Need to impose

J =0

because J" «x E!.

Linear time-dependence ¢ = gt + ¥ (r, 0):

¢ Possibility to build non-trivial solutions

* Matching to cosmology

& Static (stationary) metric



Example of exact solution

EB, Charmousis’13

& Subclass of Horndeski theory:

S — / doy=g (R—2A — X + BG40, 0)

& Simple (stealth) solution reads

oM
f=h=1-224 1,2 gb:qtzl:/dr—\/l—

T 3ﬁ
Secondary hair ¢ = C";;w
* X = g"0,¢0,6 = —q? is constant for such solutions [KobayashisTanahashi'1l4].

Leads to nice generalization to include arbitrary G5 and Gjy.

& Also there are further generalisations to beyond Horndeski, DHOST.



Example of exact solution

EB, Charmousis’13

& Subclass of Horndeski theory:

S — / d*2v/=g (R — 2\ — nX + BG™ 8,60, 6)

& Simple (stealth) solution reads

oM
f=h=1-"4+1,2 qb:qt:I:/drg\/l—h.
r 303 h

+AB

Secondary hair ¢ = C"ﬂn

» Disformal transformation g, — g,, + D(X)¢,¢,, e.g. to get the speed of gravity =
speed of |ight [EB, Charmousis, Esposito-Farése, Lehébel]:

A coordinate change shows that

Gpv = Guv — C+ g o2 PPy D(spherical stealth) = spherical stealth




Rotating solution?

Charmousis+’19

The idea is to associate the scalar ¢ with the geodesics in Kerr space.

Hamilton-Jacobi equation

glr 9,808,858 = —m?
If we assume for the scalar X = g, 9,$0,¢ = —q* (like in spherical symmetry), one

can look for the solution ¢ = S.

Ensure that there is no backreaction so Kerr solution remains to be valid.
Restricts considerably the class of the DHOST theories.

Choose geodesics such that ¢ is regular everywhere (at least outside the horizon).
Fix constants of integration of geodesics.



Stealth Kerr solution in DHOST

Charmousis+’19

* A stealth Kerr solution, where the metric is Kerr and the scalar field such that

g = GKerr
X = g""0,¢0,¢ = Xy = const.

¢ =q t+/\/2MT(Aa2+T2)dr

& The metric gkerr is regular everywhere apart from the ring singularity and

& The scalar field is regular at » > 0.



Cosmological black holes

EB, Charmousis, Lecoeur’?23

$ Time-dependent solutions with ¢ = qt + ¥ (r,0) with flat asymptotic:
Guv = NMuv and ¢=qt as 7 — OQ.

* Perform a conformal transformation of the solution g,, — 9., = C (¢) g,.-
C(DHOST) = DHOST.

& ¢ plays a role of conformal time of expanding universe:
asymptotically 7, = g, = C (¢) 1., with C(d) = ag g (®)-

& Choice of C corresponds to a cosmological evolution.

* Regular ¢ (at the horizon) leads to regular resulting conformal solution.

* Black hole embedded in FLRW universe.



Disformed Kerr black hole

Anson, EB, Charmousis, Hassaine’20

[see also Achour+'20]

& Starting from the stealth Kerr solution, we perform the transformation:

Qv

~ ey D i 2Mr(a? + r2
glw:g(K )_q_zaﬂ¢8v¢a ¢:q t"’/\/ (A )dr

% where D and g are constants.

J\_

® The line element is now

oM 2Mr(a? 4 72) 2A — 2M (1 + D)rD(a? + 12
d§2=—(1— er) dt2—2D\/ n dtdr + ° ( J’AZ Jro(@ +77) 42

~ .9 e 2
3 4+/1 + D;\;Iar sin edtdgo n 8122 0 [('r2 4 a2)2 — a2A sin? 9] d902 + ;02d92

with M = M/(1 + D) and the rescaling t — /1 + Dt

.




Disformed Kerr black hole

The solution is not Ricci-flat, but the only singularity is at p = 0, like Kerr.

The spacetime is globally causal, since there is ¢(t, r) which serves as a global

time.

Non-circular space-time

There are three important surfaces: static limit (egrosphere), stationary limit
and the event horizon (in case of Kerr spacetime the two latter coinside).

>

horizon

D

stationary
limit

ergosphere



Conformal symmetry



BBMB solution

& Scalar field with non-minimal coupling:

Bocharova, Bronnikov, Melnikov'70; Bekenstein'’/74

S = / d*z\/—g (R — %ama% — 11—2R¢2)

# The BBMB solution is

M\ 2 dr? M
2 _[1-2= 2 1 r2dQ0? — +

» Properties: Metric of the extremal Reissner-Nordstrom; scalar diverges at r;, = M; it
is unique; hair with the choice &= due to the discrete symmetry ¢ — —o¢.



BBMB solution

Bocharova, Bronnikov, Melnikov'70; Bekenstein'’/74

& Scalar field with non-minimal coupling:

S = /d4x\/jg (R

# The BBMB solution is

M\’ 2
ds? = — (1= 2} ap 4 44
" (1-2)°

M
2 — 4+
¢ r— M

scalar diverges at r;, = M; it
etry ¢ — —o.

& Properties: Metric of the extremal Reissner-Nordstrc
is unique; hair with the choice & due to the discrét

& The key in finding the solution is in the conformal invariance of the scalar part of the
action, g,, — €*?g,, and ¢ > e 7¢ =S, — Sy + b.t.
As a consequence of the invariance

R =0 (pure geometric constraint)

1
(o = 6R¢ = ¢ =0 (first integral)

& This allows to derive the most general asymptotically flat solution [xanthopoulos &

Zannias '91]



Generalization of the action

Lu-Pang'20, Fernandes'2l1

# Generalized action: Martinez, Troncoso, Zanelli'03
4 > 19 4
S =/d T\/—g {R — 2A—6p ((8(;5) + gR(b ) — 2\¢

_Gup, 406 (09)° | 2(09)° }

—a |In(¢)G e — pe v

where G = R? — 4R, R*" + RWQBR“”O‘ﬂ is the Gauss-Bonnet invariant.

® The a— contribution breaks the conformal invariance of the action for the scalar.
The scalar field equation remains conformally invariant.

® Look for the solution

dr?

ds® = —f(r)dt +f(r)

+7r2dQ?, ¢ = o(r).



Geometric constraint from conformal EOM

Conformal invariance of the scalar EOM = pure geometric constraint:
R—2A+%g=0

From which the solution for f(r) immediately follows:

r2 | oM g A
— 14+ — |14+ 4[14+4da -2 + =
f(r) +2a \/+ a(r3 r4+3)

Geometric constraint comes from conformal
symmetry of the scalar EOM, without conformal
invariance of the scalar action.

Non-Noetherian scalar field
[Ayon-Beato & Hassaine'23]



Geometric constraint from conformal EOM

Scalar field equation is has a "simple” form to integrate (assuming a # 0):

(%) (r10or? -6 (14 £r26%)) =0

Two disconnected branches of solutions [Fernandes'21]

Extensions: [Babichev, Charmousis, Hassaine Lecoeur'22]
. : :
& Slowly rotating solutions
* Radiating solutions (Vaidya-like)
* Wormbholes by disformal transformation

» Gravitational monopole-like solution



ROtating SOIUtion Fernandes'23

¥ Kerr-Schild ansatz:
ds® = dsg,, + H(x) (ludw“)2 ;

where H is a scalar (to look for) and [* is the tangent vector to a geodesic null
congruence.

* The solution contains arbitrary functions M (6) and ¢(6) (a sign of strong coupling?)

Very similar to the disformed Kerr solution:

® Non-circular

& The horizon is given by a similar equation.




No symmetry (but simple scalar EOM?)

EB, Charmousis, Hassalne & Lecoeur '23

Give up the requirement of the symmetries?
But construct a theory that yields a similar scalar field equation with factorization.

5= [ateymg{ @+ W @) R- V(0 (V0P +2(9) +V (96415 (9) G V,6%.0
+V5(9) (V)" + Va (¢) D6 (V9)* }.

$ The combination E} — E” = 0 can be factorized:

(z/l;2 —1 T2W¢ +4 (1 — f) V¢ -+ 2f'r'V2<b' -+ fT2V4 (¢/)2 = 0,

provided specific relations between the potentials (still leaving 3 arbitrary potentials at
this step Z, V and W).

» Fix the potentials Z, V and W so that the remaining 2 equations admit the solution

for f = f(r)



Conclusions

» Use symmetries of gravity theories to construct analytic solutions.
» Shift symmetry of a theory leads to a conserved current.
» Conformal symmetry leads to a geometric constraint.

» General disformal transformation as a way to construct new
solutions.



