Impact of the Tinker mass function on galaxy cluster constraints for cosmology in Rubin/LSST-DESC

T. Colin 1 M. Aguena Da Silva 2 S. Mei 3

¹Ecole Normale Supérieure Paris

^{2,3}Astroparticule et Cosmologie

Rubin-LSST France meeting

- 1) Halo abundance formalism
- 2 Statistical methods
- 3 Simulation results
- 4 Conclusions and perspectives

Halo abundance formalism

- 2 Statistical methods
- 3 Simulation results
- 4 Conclusions and perspectives

T.Colin (ENS Paris)

Image: Image:

Define the mass function : $\frac{d\bar{n}(M,z)}{d\ln M} = \frac{\bar{\rho}_m}{M} \frac{d\ln \sigma^{-1}}{d\ln M} f(\sigma)$

- Press-Schechter, 1974 : $f(\sigma) = \sqrt{\frac{2}{\pi}} \frac{\delta_c}{\sigma} \exp\left(-\frac{\delta_c^2}{2\sigma^2}\right)$
- Jenkins, 2001 : $f(\sigma) = a \exp\left(-|b \ln \sigma|^{c}\right)$
- Tinker, 2008 : $f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right] \exp\left(-c/\sigma^2\right)$
 - A : overall amplitude of the mass function
 - a : slope of the low-mass power law
 - $\bullet\,$ b : amplitude of the low-mass power law
 - c : cutoff scale at which the abundance of halos exponentially decreases

The mean number density of halos in a mass bin α :

$$ar{n}_{lpha}(z)\equiv\int_{M_{lpha}}^{M_{lpha+1}}rac{dM}{M}rac{dar{n}}{d{
m ln}M}$$

The mean value of dark matter halo number counts in a redshift bin i and mass bin α :

$$ar{m}_{lpha,i} = \int dV_i ar{n}_{lpha}(z) = \Delta \Omega \int_{z_i}^{z_{i+1}} dz rac{D_A^2(z)}{H(z)} ar{n}_{lpha}(z)$$

1 Halo abundance formalism

- 2 Statistical methods
 - 3 Simulation results
- 4 Conclusions and perspectives

T.Colin (ENS Paris)

Image: Image:

Bayes' rule : posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$
, $\mathcal{P}(\theta|Y) = \frac{\mathcal{L}(Y|\theta)\Pi(\theta)}{p(Y)}$
• Likelihood : $\ln \mathcal{L}(Y|\theta) = -\frac{1}{2}\sum_{ij}(y_i - m_i)C_{ij}^{-1}(y_j - m_j) + \text{cst}$

- Prior : Uniform
- Evidence : Do not contribute

Parameter space sampled using Markov Chain Monte Carlo.

1 Halo abundance formalism

- 2 Statistical methods
- 3 Simulation results
 - 4 Conclusions and perspectives

T.Colin (ENS Paris)

Image: Image:

cosmoDC2 simulation

- Sky area : 439.8 deg²
- 454k dark matter halos, $\log(M/M_{\odot}) \in [13.0, 15.3]$, Redshift $\in [0.015, 3.04]$

Simulation parameters

•
$$12 \times 12$$
 Bins =
$$\begin{cases} \log M &\in [13.5, 15.0], \text{bin size} = 0.1, \text{last bin} = 0.4 \\ z &\in [0.10, 1.60], \text{bin size} = 0.1, \text{last bin} = 0.4 \end{cases}$$

• Number of dark matter halos considered = 59k

- Overdensity $\Delta = 200$
- MCMC: emcee (24 walkers, 300-500 steps)

Modeling done with a modification on CCL (Cluster Cosmology Library, from DESC) to change halo mass function parameters.

Time: for 12 logM and 12 bins z it takes 200s for full computation and 40s for interpolated computation (1700 interpolation points), 5 times faster!

Precision: Using DC2 cosmology { $\Omega_c = 0.22, \sigma_8 = 0.8$ }, full computation is ~ 1.3% higher than in the interpolated.

Cosmological constraints :

• N°1 : Tinker08 Full computation $\rightarrow \{\Omega_{c,1} = 0.2039^{+0.0007}_{-0.0008}, \sigma_{8,1} = 0.8268^{+0.0007}_{-0.0007}\}$ • N°2: Tinker08 Interpolation $\rightarrow \{\Omega_{c,2} = 0.2068^{+0.0007}_{-0.0008}, \sigma_{8,2} = 0.8265^{+0.0008}_{-0.0008}\}$

Same relative difference between $\Omega_{c,1}$ and $\Omega_{c,2}$

3rd case : Calibrating the mass function

Using the original values $\Omega_c = 0.22$ and $\sigma_8 = 0.8$ from the DC2 simulation, we get new Tinker08 halo mass function parameters :

	Tinker08	Calibrated mf
А	0.186	$0.3030^{+0.019}_{-0.016}$
а	1.47	$1.919\substack{+0.044\\-0.039}$
b	2.57	$1.452^{+0.068}_{-0.071}$
С	1.19	$1.181\substack{+0.007\\-0.008}$

11/24

T.Colin (ENS Paris)

June 2023

4th case : Consistency check

Take the previous maximum posterior values of {A, a, b, c} and try to find back the original imput parameters { $\Omega_c = 0.22, \sigma_8 = 0.8$ }

	3rd	4th
Ω_c	0.220	$0.2195\substack{+0.0007\\-0.0008}$
σ_8	0.800	$0.8010\substack{+0.0008\\-0.0010}$
А	$0.3030\substack{+0.019\\-0.016}$	0.3030
а	$1.919\substack{+0.044 \\ -0.039}$	1.918
b	$1.452\substack{+0.068\\-0.071}$	1.452
с	$1.181\substack{+0.007\\-0.008}$	1.182

T.Colin (ENS Paris)

June 2023

5th case : Cosmology and HMF

Approximate the previous posterior distributions by Gaussians, reuse them as new priors and leave the 6 parameters $\{\Omega_c, \sigma_8, A, a, b, c\}$ free.

	3rd	5th
Ω_c	0.220	$0.2128^{+0.0024}_{-0.0021}$
σ_8	0.800	$0.8013^{+0.0021}_{-0.0022}$
А	$0.3030^{+0.019}_{-0.016}$	$0.3127^{+0.0067}_{-0.0052}$
а	$1.919\substack{+0.044 \\ -0.039}$	$1.898^{+0.017}_{-0.018}$
b	$1.452\substack{+0.068\\-0.071}$	$1.465^{+0.021}_{-0.023}$
С	$1.181\substack{+0.007\\-0.008}$	$1.181\substack{+0.004\\-0.004}$

T.Colin (ENS Paris)

June 2023

Difference between models

T.Colin (ENS Paris)

Recap :

N°	Method	Ω_c	σ_8	$\{A,a,b,c\}$
1	Full com- putation	$0.2039\substack{+0.0007\\-0.0008}$	$0.8268\substack{+0.0007\\-0.0007}$	{0.186, 1.47, 2.57, 1.19}
2	Interpolated model	$0.2068\substack{+0.0007\\-0.0008}$	$0.8265\substack{+0.0008\\-0.0008}$	{0.186, 1.47, 2.57, 1.19}
3	Interpolated model	0.220	0.800	{0.303, 1.92, 1.45, 1.18}
4	Interpolated model	$0.2195\substack{+0.0007\\-0.0008}$	$0.8010\substack{+0.0008\\-0.0010}$	{0.303, 1.92, 1.45, 1.18}
5	Interpolated model	$0.2128^{+0.0024}_{-0.0021}$	$0.8013\substack{+0.0021\\-0.0022}$	{0.316, 1.89, 1.46, 1.18}

2

15 / 24

→

June 2023

• • • • • • • • •

Rubin-LSST France

- 1 Halo abundance formalism
- 2 Statistical methods
- 3 Simulation results
- 4 Conclusions and perspectives

T.Colin (ENS Paris)

▲ 西部

Conclusions

- We reduce computation time of Tinker08 model with interpolation.
- Need to find a compromise between precision and computation time.
- We find new Tinker08 parameters that fit cosmoDC2 better.
- But when all parameters are free, the function calibrated on the Tinker08 model does not provide the best prediction for cosmoDC2.

Perspectives

- Improve the interpolated function.
- Test new sets of data, see if the interpolated model is still consistent.
- Implement in the LSST pipeline a way to modify easily the Tinker08 halo mass function parameters.
- Test other halo mass function.

cosmoDC2 simulation : data points

T.Colin (ENS Paris)

Rubin-LSST France

June 2023

N°	Method	Data Points	L	Ω _c	σ8	{A,a,b,c}
1	Full com- putation	DC2 simulation	FC	0.2039 ^{+0.0007} -0.0008	0.8268 ^{+0.0007} -0.0007	{0.186, 1.47, 2.57, 1.19}
2	Interpolated model	DC2 simulation	FC	0.2068 ^{+0.0007} -0.0008	$0.8265^{+0.0008}_{-0.0008}$	{0.186, 1.47, 2.57, 1.19}
3	Interpolated model	DC2 simulation	FC	0.220	0.800	{0.303, 1.92, 1.45, 1.18}
4	Interpolated model	DC2 simulation	FC	$0.2195^{+0.0007}_{-0.0008}$	$0.8010^{+0.0008}_{-0.0010}$	{0.303, 1.92, 1.45, 1.18}
5	Interpolated model	DC2 simulation	FC	$0.2128^{\textbf{+0.0024}}_{-0.0021}$	$0.8013^{+0.0022}_{-0.0022}$	{0.316, 1.89, 1.46, 1.18}
6	Full com- putation	Gaussian distribution with Poisson error	Р	$0.2238^{\textbf{+0.0013}}_{-0.0017}$	$0.7975^{+0.0019}_{-0.0016}$	{0.186, 1.47, 2.57, 1.19}
7	Interpolated model	Only Poisson error	Р	0.2200	0.8000	{0.186, 1.47, 2.57, 1.19}
8	Interpolated model	Gaussian distribution with Poisson error	Р	$0.2267^{+0.0016}_{-0.0021}$	$0.7972^{+0.0016}_{-0.0016}$	{0.186, 1.47, 2.57, 1.19}
9	Interpolated model	DC2 simulation	Р	$0.2095^{+0.0015}_{-0.0015}$	$0.8200^{+0.0016}_{-0.0018}$	{0.186, 1.47, 2.57, 1.19}

2

Image: A math and A

Relative difference between Tinker08 and Tinker08 interp in function of the interpolation step of redshift

Sum over the redshift $\in [0.1, 1.6]$

T.Colin (ENS Paris)

Rubin-LSST France

June 2023

For the same initial parameters, the number of clusters in the Tinker08 model is approximately 1.3% higher than in the interpolated Tinker08.

Same data points generated by a Gaussian perturbation of the theoretical models { $\Omega_c = 0.22, \sigma_8 = 0.8$ } with Poisson likelihood :

• N°6 : Tinker08 Full computation $\rightarrow \{\Omega_{c,6} = 0.2238^{+0.0017}_{-0.0013}, \sigma_{8,6} = 0.7975^{+0.0016}_{-0.0019}\}$ • N°8 : Tinker08 Interpolation $\rightarrow \{\Omega_{c,8} = 0.2267^{+0.0021}_{-0.0016}, \sigma_{8,8} = 0.7972^{+0.0016}_{-0.0016}\}$

Same relative difference between $\Omega_{c,5}$ and $\Omega_{c,7}$.

Use cosmoDC2 simulation with interpolated Tinker08 :

- N°2 : Full covariance Likelihood $\rightarrow \{\Omega_{c,2} = 0.2068^{+0.0007}_{-0.0008}, \sigma_{8,2} = 0.8265^{+0.0008}_{-0.0008}\}$
- N°9 : Poisson Likelihood

$$\rightarrow \quad \{\Omega_{c,9} = 0.2095^{+0.0015}_{-0.0015}, \sigma 8, 9 = 0.8200^{+0.0016}_{-0.0018}\}$$

Tinker08 interpolation

• To reduce the computation time, let's interpolate the Tinker08 mass function:

$$ar{m}_{lpha,\mathcal{I}} = \int_{\mathcal{I}} \mathrm{d}z \left(\int_{lpha} \mathrm{dlog} M \frac{dar{n}}{dM}(\mathrm{cosmo}) \right) \mathrm{d}V(z)$$

• For a given $\alpha \equiv \log M$ and $z_i \in [0.0, 1.7]$, step of 0.001 :

$$g^{\alpha}(z_i) = \left(\int_{\log M_{\alpha}}^{\log M_{\alpha} + \operatorname{dlog} M} \operatorname{dlog} M \frac{d\bar{n}}{dM}(\operatorname{cosmo})\right) \mathrm{d}V(z_i)$$

• Introduce $g_{interp}^{\alpha} = Interp(z_i, g^{\alpha}(z_i))$ • It finally gives : $\bar{m}_{\alpha, \mathcal{I}} = \int_{\mathcal{I}} dz g_{interp}^{\alpha}$

- Full computation : 1 point (logM,z) = 1.4s
- Interpolation : 1 vector $(\log M, \forall z) \times 1000$ interpolation points = 2s

Example : Our grid : 12 logM, 12z and 1700 interpolation points :

- Full computation : $12 \times 12 \times 1.4 = 200s$
- Interpolation : $12 \times 1.7 \times 2 = 40s$
- \longrightarrow Here interpolation model is 5 times faster.

