Impact of blending on DC2 data: **Tools and analysis**

Laboratoire de Physique Subatomique & Cosmologie Supervisors : Cyrille Doux, Marine Kuna

LSST-France, June 2023 Manon Ramel

Scientific context Cosmology with galaxy clusters

Largest gravitationally bound structures in the Universe

- Size of 1 Mpc
- 50 to 1000 galaxies
- $M > 10^{13.5} M_{\odot}, z < 3$

Tracers of the matter over-densities

Abundance depends on cosmology

Studied through their counting per bins of mass and redshift

 10^{-4}

cluster mass $M [M_{\odot}]$

 10^{16}

Scientific context Weak gravitational lensing

Scientific context Weak gravitational lensing

Lensed ellipticities of background sources

 $e^{obs} \approx e^{int} + \gamma(R)$ shear $\Rightarrow \langle e^{obs} \rangle \approx \gamma(R)$

• Excess surface density depends on the projected mass of the lens

Scientific context Blending

Superposition of galaxies on the images due to:

- the depth of observation
- the **atmosphere**

Recognized blends ~40 % Hubble/ACS

Unrecognized blends ~14 - 20 %*

Subaru/HSC

Scientific context Blending around galaxy clusters

Galaxy clusters = high density regions = **blending**

OUTSIDE

Blending impacts the **detection** of galaxies and the measurement of galaxy **shapes**

LSST France. Manon Ramel 08/06/2023

High amount of blending near clusters centres

Blending will impact future Rubin/LSST weak lensing data induced by massive clusters

Tools and pre-work

LSST France. Manon Ramel 08/06/2023

Tools and pre-work Simulated catalogs

Millennium 2005, Springel et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for galaxies and dark matter haloes
- mag < 30, z = 3

mag_i	ra	e1	(
24.541830	58.200397	-0.141020	-35.7022
26.177008	58.179060	0.173040	-35.702
24.806880	58.100637	0.138385	-35.7024
25.014057	58.190685	-0.148557	-35.701
25.883955	58.151774	-0.505306	-35.701
26.582999	56.529076	-0.210661	-34.322
27.233892	56.628691	-0.630063	-34.278

DESC simulated image

DC2object = **object** catalog

- Simulated images from cosmoDC2
- Detection of **objects**
- Measured positions, magnitudes (< 28), shapes...

Identification of blends through catalog matching

Tools and pre-work HSM calibration and DC2 photometric redshifts

HSM ellipticities calibration

 $\Delta \Sigma(R, z_l) = \left\langle \Sigma_{crit}(z_{gal}, z_l) \; \epsilon_+^{obs} \right\rangle$

 $e_{HSM} = 0.85 \times e_{truth} - 0.003$

Tools and pre-work HSM calibration and DC2 photometric redshifts

HSM ellipticities calibration

Individual errors that we can calibrate \rightarrow sufficient for blending?

Photometric redshifts

Detection of blends in DC2

LSST France. Manon Ramel 08/06/2023

Detection of blends in DC2 Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Detection of blends in DC2 Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Detection of blends in DC2 New matching algorithm: friendly

Friends-of-Friends = **distances** information

https://github.com/LSSTDESC/friendly

Overlap test = **shapes** information

Friendly = more robust matching algorithm

Detection of blends in DC2 New matching algorithm: friendly

Friendly group

https://github.com/LSSTDESC/friendly

NetworkX graph

Detection of blends in DC2 New matching algorithm: friendly

Next steps: Add metrics on the nodes/edges

- Absolute overlap fraction
- Purity
- Magnitudes/colors
- •

https://github.com/LSSTDESC/friendly

Friendly = useful graph structure to better define the (un)recognized blends

Impact of blending on $\Delta\Sigma$ profiles

LSST France. Manon Ramel 08/06/2023

Blending and weak lensing Impact of blending on $\Delta\Sigma$ profiles

Objective: study the impact of (un)recognized blends on $\Delta\Sigma$ profiles

% of unrecognized blended sources: ~9 % % of recognized blended sources: ~30 %

Understand the **20% shift** between cosmoDC2 and DC2object profiles

https://github.com/LSSTDESC/CLMM

Conclusion and perspectives

Development of friendly = new blending matching algorithm

Impact of blending on $\Delta \Sigma \text{ profiles}$

Thank you for your attention !

Better definition of (un)recognized blends

Impact on galaxy clusters mass estimates and on cosmology

