GRAVITATIONAL LENSING BY MATTER CURRENTS Calum Murray, APC, Paris, Raphael Kou and James G. Bartlett

LSST-France, Grenoble, 2023

GRAVITATIONAL LENSING

- potential ϕ

Unlensed field

➤ The path of light is perturbed by gradients in the gravitational

Distorts the images of distant galaxies

Lensed field

RADIALLY MOVING LENSES

- ► The radial movement of the mass induces a gravitational force
 - Gravitomagnetic field produced by moving matter
- Modulates t velocity

Deflectio

Lensing con

► It's a small

► Modulates the magnitude of lensing effects proportional to the

on angle:
$$\alpha_{\phi} \to \alpha_{\phi}(1 - v_{\parallel}/c)$$

vergence: $\kappa_{\phi} \to \kappa_{\phi}(1 - v_{\parallel}/c)$

effect
$$v_{\parallel}/c \approx 10^{-3}$$

OBSERVATIONAL STATUS

- ► Measured with the motion of Jupiter (Fomalont and Kopeikin 2003) + Gravity Probe B
- ► No cosmological scale measurement yet
 - Would provide fairly direct measurement of the motion of dark matter
 - ► Test of Lorentz invariance

$$ds^{2} = a^{2}(\tau) \left[-(1 + 2\psi) \right]$$

$$ds^{2} = a^{2}(\tau) \Big[-(1+2\psi)d\tau^{2} +$$

 $d\tau^2 + (1 - 2\phi)\gamma_{ij}dx^i dx^j$ $-2\mathcal{V}_i d\tau dx^i + (1 - 2\phi)\gamma_{ij} dx^i dx^j$

COSMIC MOMENTUM FIELD

- Scalar/density perturbations source vector perturbations
 - Massive objects cause other objects to move towards them

► Continuity equation, $\mathbf{v}(k) = iaHf \frac{\delta(k)}{k^2} \mathbf{k}$

COSMIC MOMENTUM FIELD

- Scalar/density perturbations source vector perturbations
 - Massive objects cause other objects to move towards them

► Continuity equation, $\mathbf{v}(k) = iaHf \frac{\delta(k)}{k^2} \mathbf{k}$

LENSING POWER SPECTRUM

- $\phi \phi$ is the normal term from density homogeneities
- ► $j_{\parallel}j_{\parallel}$ is the induced lensing convergence correlation from the momentum field
- ► The moving lens term j_{\parallel} is tiny

$$\kappa_{\Phi}(\theta) = \frac{3}{2} \left(\frac{H_0}{c}\right)^2 \Omega_{m,0} \int_0^{\chi_s} d\chi \frac{\chi(\chi_s - \chi)}{a\chi_s} \delta$$
$$\kappa_{j_{\parallel}}(\theta) = \frac{3}{2} \left(\frac{H_0}{c}\right)^2 \Omega_{m,0} \int_0^{\chi_s} d\chi \frac{\chi(\chi_s - \chi)}{a\chi_s} f$$

Δx

CROSS-CORRELATIONS +tive ► We can cross correlate it with the line-of-•• K_Ø sight projected momentum field ► We need to estimate/ find a tracer of the projected momentum density field -tive These fields and following work done using the Quijote simulations +tive $K = K_{\phi} + K_{j_{\parallel}}$ ° Kj∥ -tive

Δx

Ą

CROSS-CORRELATIONS +tive ► We can cross correlate it with the line-of-∙∘ **Κ**φ sight projected momentum field ► We need to estimate/ find a tracer of the projected momentum density field -tive These fields and following work done using the Quijote simulations +tive $\kappa = \kappa_{\phi} + \kappa_{i_{\parallel}}$ ⁺° **K**j∥ -tive

Ą

ESTIMATING THE COSMIC MOMENTUM FIELD WITH GALAXIES

► Estimate $\delta(\mathbf{x}) = \delta_g(\mathbf{x})/b_g$, $\delta(\mathbf{x}) \to \delta(\mathbf{k})$

Construct the momentum field

$$= iaHf\delta(\mathbf{k})\frac{\mathbf{k}}{k^2} \left(1 + \hat{\delta}(\mathbf{k})\right)$$

Limited by the shot noise of galaxy surveys at small scales

 \hat{K}_{j} ا $+\delta v_{\mu}$

 Δx

 $\delta_g = n_g / \bar{n}_g - 1$

CORRELATION BETWEEN: $\hat{\kappa}_{j}$ **AND** κ_{j}

- ► Estimate $\delta(\mathbf{x}) = \delta_g(\mathbf{x})/b_g$, $\delta(\mathbf{x}) \to \delta(\mathbf{k})$
- Construct the momentum field

►
$$\hat{\mathbf{q}}(\mathbf{k}) = iaHf\delta(\mathbf{k})\frac{\mathbf{k}}{k^2}(1+\hat{\delta}(\mathbf{k}))$$

$$\hat{\kappa}_{j_{\parallel}} \sim \sum (1 + \hat{\delta}) \hat{v}_{\parallel}$$

$$\hat{\kappa}_{j_{\parallel}} \sim \sum (1 + \delta) v_{\parallel}$$

CROSS CORRELATIONS WITH SIMULATION
• Estimate
$$\delta(\mathbf{x}) = \delta_g(\mathbf{x})/b_g$$
, $\delta(\mathbf{x}) \to \delta(\mathbf{k})$
• Construct the momentum field
• $\hat{\mathbf{q}}(\mathbf{k}) = iaHf\delta(\mathbf{k})\frac{\mathbf{k}}{k^2}(1+\hat{\delta}(\mathbf{k}))$
• $\hat{\kappa}_{j_{\parallel}} \sim \sum (1+\hat{\delta})\hat{v}_{\parallel}$
• $\kappa_{j_{\parallel}} \sim \sum (1+\delta)v_{\parallel}$
• $\langle \hat{\kappa}_{j_{\parallel}}\kappa_{\phi} \rangle = \sqrt{\kappa_{\phi}\frac{\hat{v}_{\parallel}}{c}\hat{\kappa}_{\phi}} = 0$

• • • •

FORECASTS: IS THIS MEASURABLE? $\succ \kappa_{\text{total}} = \kappa_{\phi} + \kappa_{j_{\parallel}}$ \succ $C^{\kappa\kappa}$ is the convergence auto-correlation, dominated by the density perturbation > $C^{\hat{\kappa}_{j\parallel}\kappa}$ is the reconstructed momentum field-convergence correlation function $\blacktriangleright f_{sky} = 1/4$ ► $\bar{n}_{gal} = 10^{-3} [Mpc^{-3}]$ for momentum reconstruction ► 30 galaxies per arcminute² for the lensing measurement

104

FORECASTS

- ► For next generation surveys, Euclid/ Rubin we have a SNR ~ 5
 - Can improve this by messing around with cosmological parameters
- ► The SNR is dominated by the cosmic variance from κ_{ϕ}

$$\kappa = \kappa_{\phi} + \kappa_{j_{\parallel}}$$

$$\left(\frac{S}{N}\right)^{2} = f_{sky} \sum_{l} (2l+1) \frac{\left(C_{\kappa_{j}\kappa}\right)^{2}}{C_{\kappa_{j}\kappa_{j}} \left(C_{\kappa\kappa} + N\right)^{2}}$$

CONCLUSIONS

- Matter currents have a small effect on the measured gravitational lensing signal
- A fairly direct measurement of the motion of dark matter
- A test of Lorentz invariance on cosmological scales
- Difficult to measure but hopefully possible with the next generation of cosmological surveys!

FORECASTS COMPARISON

- ► $\bar{n}_{gal} = 10^{-2}$ is likely the cosmic variance limit for a galaxy survey
- Momentum refers to exact reconstruction of the momentum field
- ► Galaxy reconstruction gives access to larger scales
- kSZ gives access to smaller scales

$$\frac{\Delta T_{kSZ}(\hat{n})}{T_{cmb}} \approx \int_{0}^{sls} d\chi e^{-\tau(z)} v_{\parallel} \delta_{e}(\hat{n},\chi)$$

104

WE NEED TO CROSS CORRELATE!

 $\left(\frac{S}{N}\right)^2 = f_{sky} \sum_{l} (2l+1) \frac{\left(C_{\kappa_j \kappa_j}\right)^2}{\left(C_{\nu \nu} + N_l\right)^2}$

 $\left(\frac{S}{N}\right)^2 = f_{sky} \sum_{l} (2l+1) \frac{\binom{C_{\kappa_{j}\kappa}}{C_{\kappa_{j}\kappa_{j}}}}{C_{\kappa_{j}\kappa_{j}}}$

 $C_{\kappa_j \kappa_j}$ is much smaller than $C_{\kappa\kappa}$

KSZ EFFECT

- Doppler shift of the CMB as seen by electrons with a bulk velocity relative to the CMB
- Direct access to the projected momentum to very small scales
- ► Not the same kernel as lensing

$$\frac{\Delta T_{kSZ}(\hat{n})}{T_{cmb}} \approx \int_{0}^{sls} d\chi e^{-\tau(z)} v_{\parallel} \delta_{e}(\hat{n},\chi)$$