
OIDC/OAuth2 based
security framework

A.Tsaregorodtsev, A.Lytovchenko

CPPM-IN2P3-CNRS, France,

23d March 2023 ISGC’22, Taipei

Outline

2

} DIRAC Project

} Moving towards IODC/OAuth2 based security
framework
} Getting user credentials
} Secure client/server protocol
} Token Management
} User Management
} Pilot Factory

} Status and plans

} Conclusions

Disclaimer

3

The presented current status of the DIRAC
OIDC/OAuth2 security framework is a work in
progress in a rapidly evolving environment. Important
changes are likely in the near future.

Installations and communities

4

Current AAI system

5

} The DIRAC secure client/service protocol is
based on X.509 certificates
} Users: proxy certificates to access DIRAC services
} Services: host certificates for inter-service

communications

} Users are registered in the DIRAC Registry as
members of some of the DIRAC groups
} Automatic synchronization with VOMS
} Users are identified by DN’s of their certificates

} Group properties determine user rights with
respect to the DIRAC services
} Groups are embedded into the user proxies

} Long user certificate proxies are stored in the
ProxyManager for asynchronous operations on
the user’s behalf

New AAI technologies

6

} The new generation AAI frameworks are based on
the OIDC/OAuth2 industry standards.
} Multiple Identity Providers (IdP) offer services for user

authentication and community management

} The DIRAC security framework is being updated to
follow the new standards

Transition requirements

7

} Introduction of the new AAI framework should
ensure continuity of multiple DIRAC services in
production
} In the transition period it should be compatible with both

X.509 certificates and OAuth2 tokens to ensure smooth user’s
migration

} Multi-VO DIRAC services should be compatible with different
IdPs with different user profiles

} DIRAC users should not see dramatic changes in their day-to-
day work

AAI components

8

} The DIRAC client/service protocol based on tokens
} Users accessing DIRAC services
} Communications between DIRAC services and agents

} Token Management to provide valid tokens for
asynchronous operations

} User Management based on information from IdPs
} Reduce to minimum user management in DIRAC

} Connectors to external resources/services using
tokens based AAI
} Computing and storage services

User login protocol

9

} device flow (CLI) or authorization_code flow (Web) to the DIRAC
Authorization Server redirected via authorization_code flow to a
chosen Identity Provider

DIRAC Authorization Server

10

} DIRAC AS implements a standard Authorization Server interface
but serves as an intermediate step towards backend Identity
Provider (IdP)

} It is a single entry point for the DIRAC users
} No complicated local configuration required

} Allows to interface multiple IdP’s
} Configured centrally allowing user to make a choice

} Stores long refresh tokens in the TokenDB
} For asynchronous user operations
} No need to upload user tokens

} Assists users and choosing the right DIRAC group
} Group that user belongs to and which is managed by a chosen IdP

} Returns a token with proper contents (claims) according to a chosen DIRAC
group

} Can return proxy certificate
} if available in the ProxyManager service

User authentication:CLI

11

jovyan@jupyter-916ace3e:~$ source /cvmfs/dirac.egi.eu/dirac/bashrc_egi
(base) jovyan@jupyter-916ace3e:~$ dirac-login --issuer=https://dirac.egi.eu/auth --token
Use the following link to continue
https://dirac.egi.eu/auth/device?user_code=RPMR-WTWW
Authorization pending.. (use CNTL + C to stop)

New token is saved to /tmp/bt_u1000.
subject : 5cb92dfc-5dbe-403a-b7c8-ccdbeecd1a99
issuer : https://wlcg.cloud.cnaf.infn.it/
timeleft : 12:57:14
username : atsareg
DIRAC group : biomed_user
properties : NormalUser

Example user login (Jupyter Notebook terminal)

1. Initialize the DIRAC client and start the authorization flow

2. Authenticate via Check-In, choose DIRAC group (see next slide)

3. Store the received token

User authentication flow

12

1. Choose Identity Provider
2. Authenticate with
EGI Check-In

3. Consent screen

4. Choose DIRAC group

5. Return to the terminal

DIRAC AS
External IdP

User authentication:CLI

13

(base) jovyan@jupyter-916ace3e:~$ dirac-login --issuer=https://dirac.egi.eu/auth --proxy
Use the following link to continue
https://dirac.egi.eu/auth/device?user_code=QLST-JJQT
Authorization pending.. (use CNTL + C to stop)

Proxy is saved to /tmp/x509up_u1000.
subject : /O=GRID-FR/C=FR/O=CNRS/OU=CPPM/CN=Andrei Tsaregorodtsev/CN=8471106824/…
issuer : /O=GRID-FR/C=FR/O=CNRS/OU=CPPM/CN=Andrei Tsaregorodtsev/CN=8471106824
identity : /O=GRID-FR/C=FR/O=CNRS/OU=CPPM/CN=Andrei Tsaregorodtsev
timeleft : 06:29:58
DIRAC group : biomed_user
path : /tmp/x509up_u1000
username : atsareg
properties : Pilot, NormalUser, GenericPi

Example user login with getting a proxy certificate

1. Initialize authorization flow to get proxy (no user certificate installed locally)

2. Authenticate via Check-In, choose DIRAC group

3. Store the received proxy

User authentication: Web

14

} In the DIRAC Web Portal
users are given a choice to
login with a token or
certificate
} In the case of token, user follows

the same flow as in the CLI case
except for the IdP selection

} The result is stored in the
browser as secure cookie

Client/service protocol

15

} DIRAC is migrating services
to an HTTPS based protocol
} Retiring custom DIPS protocol soon

} The HTTPS services support
both X.509 and tokens
} DIPS will not support tokens

} Access with both X.509 proxies
and tokens is granted based on
user identity and group
membership
} Proxies have DIRAC group embedded

in an extension
} Tokens must have enough information to map

unambiguously onto DIRAC groups
} After the DIRAC group is determined the same

AuthManager tool is used for both protocols

Token to DIRAC group mapping

16

} Tokens are mapped onto DIRAC groups based on their
claims.
} Claims depend on user profiles used by IdP

} Example EGI Check-In:
eduperson_entitlement:
urn:mace:egi.eu:group:registry:biomed:role=member#aai.egi.eu

-> biomed_user group
} Example WLCG IAM:

wlcg.groups = /dirac/pilot -> dirac_pilot group

} The required claims must be present in the tokens
} To avoid an expensive introspection of incoming tokens

} This is the work in progress
} E.g. Check-In recent addition of parameterized scopes allowing to add

eduperson_entitlement claims to a token

Token Management

17

} DIRAC AS is storing long Refresh Tokens of users in the
TokenManager database
} After successful user authentication
} Similar to the ProxyManager database for X.509 proxies

} Refresh Tokens are used to request Access Tokens from
corresponding IdPs with scopes corresponding to user’s
group requirement

Token Management

18

} TokenManager provides tokens to users while the
login flow with appropriate claims and scopes
} Both access and refresh tokens are provided
} Users will be able to refresh their access tokens via a refresh

flow involving TokenManager
} This is a work in progress

} TokenManager provides tokens to other DIRAC
components to perform operations on the user’s
behalf
} E.g. pilot user token for the DIRAC SiteDirector (aka Pilot

Factory) submitting pilot jobs

User Management

19

} Currently, all users are described in the DIRAC Registry statically
} Added by hand or by periodic syncing with VOMS
} Admins are notified of non-registered users connection attempts with tokens

} Moving towards complete user management by IdP services
} One-to-one correspondence of DIRAC groups and IdP claims/scopes

} Static Registry will be replaced by a dynamic Registry Service

Dynamic User Registry

20

} Registry service receives information about VO
users from IdP’s or VOMS services. There is no
need to store this information in the DIRAC
configuration

} User management is completely outside DIRAC,
this is done by VO administrators using IdP web
interfaces designed for this function

} DIRAC trusts and relies entirely on the information
received from the relevant IdP.

} This is the work in progress

Pilot framework

21

} Pilot Factories are using tokens
} Either user tokens via a refresh flow provided by the TokenManager
} Or client tokens via client_credential flow

} The preferred method will be determined in real operations
} Client-credentials

} A la robot certificates or service credentials
} OK for single-VO installations
} For multi-VO installations (e.g. EGI) different scenarios are possible

¨ Issuer per VO – Check-In is reluctant to do that
¨ Client (subject) per VO – more operations overhead for the WMS
¨ Making VO groups available in tokens and accessible by the CE services via plugins

} Access to Computing Elements is demonstrated to work with both types of
tokens
} WLCG IAM tokens
} HTCondorCE using SCITOKENS protocol
} ARC CE using the REST interface
} Using Check-In tokens for submitting pilots is the work in progress

} Recently added compute scopes to the Check-In profile

Pilot framework

22

} Cloud Sites are accessed with the Openstack
Application Credentials
} created after authentication with tokens
} Operational for EGI Federated Cloud sites with the Check-In

tokens

} The Pilot framework will continue to use proxies for
the pilot/service communications at the first stage
} Using tokens or other secure protocols will be considered

Status and plans

23

} Token based authentication is being enabled for the EGI
users
} VOs: dteam, biomed
} First users using tokens in the dirac.egi.eu Web Portal, EGI Jupyter

Notebooks
} Several sites (HTCondorCE) are running pilots

submitted with tokens in production
} WLCG IAM tokens

} Next steps in the EGI DIRAC service:
} Setting up pilot VOs in EGI Check-In to be compatible with their

DIRAC description
} biomed

} Enabling HTTPS services will allow users to access the DIRAC WMS
with tokens (job submission, monitoring, retrieving results)

Status and plans (cont’d)

24

} Development plans – long way ahead. Several
points to mention:
} Dynamic Registry Service
} Refreshing user tokens in CLI
} Integration with the RCAuth service
} Connection to storage services

} Enabling ACLs stored in the DIRAC File Catalog for accessing physical
storages

} Follow the evolution of IdProvider services

Conclusions

25

} DIRAC is undergoing a serious upgrade including a new client/service
protocol based on HTTPS and the new security framework based on the
OIDC/OAuth2 protocols.

} The new security framework was developed that allowed integration of
Identity Provider services (Check-In and WLCG IAM) for user
management, provisioning of user tokens necessary to communicate with
the DIRAC services and performing asynchronous user operations.

} Accessing Computing Element services (HTCondorCE, ARC) by the
DIRAC Pilot Factory using tokens was demonstrated

} The development of the security framework continues to include access
to new third party services (storage, RCAuth), delegation of user
management to Identity Providers as well as the overall optimization of
its performance.

Acknowledgements

26

Ø This work is co-funded by the EOSC-hub
project (Horizon 2020) under Grant number
777536

Ø EGI-ACE receives funding from the European
Union's Horizon 2020 research and Innovation
programme under grant agreement no.
101017567

http://diracgrid.org

Backup slides

27

Tokens generation, storage and usage to
access DIRAC and third party services

28

Web portal authentication
sequence diagram

29

