

Bilan et perspectives de LHCb-ions lourds

- 1. LHCb Heavy lons
- 2. IN2P3 teams program and records
- 3. Perspectives

03/02/2023

patrick.robbe@ijclab.in2p3.fr & frederic.fleuret@llr.in2p3.fr

1. LHCb Heavy lons: Detector setup

Single arm spectrometer, the only LHC experiment fully instrumented in 2 < η < 5

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

- LHCb is specialised in heavy flavour precision physics, beauty and charm:
 - Optimised for low pile-up collisions (*ie* low multiplicity):
 - Precise reconstruction of production and decay vertices
 - Correlations between particles: flavour tagging

• Main characteristics of the experiment make it attractive for Heavy ion physics :

- Instruments fully the forward region: 2<η<5
- Precise vertexing: separation of prompt production from B decay products (IP resolut°: 20μm)
- <u>Precise tracking</u>: reconstruction down to $p_{T}=0$
- − Particle identification: full reconstruction of hadronic decays of charm or beauty, such as $D^0 \rightarrow K\pi$ (ε(K→K)~95%, mis-ID ε(π→K)~5%)

1. LHCb Heavy Ions: The fixed target mode

- Can also operate in fixed-target mode: unique at LHC
 - Injecting gas in the LHCb VErtex LOcator (VELO) tank, primarly done to perform luminosity measurement.
 - Can be used as an internal gas target (SMOG)
 - Allows measurement of *p*-gas and ion-gas interactions

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle. Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.

> Noble gas only : (very low chemical reactivity)

He, Ne, Ar, Kr, Xe A = 4, 20, 40, 84, 131

Gas pressure: 10⁻⁷ to 10⁻⁶ mbar

1. LHCb Heavy Ions: Operation modes

Collider mode

LHC- Collider mode: focus on Proton-nucleus collisions

- Serve as a baseline for nucleus-nucleus collisions
- Nuclear parton distribution function (nPDF), energy loss, saturation, ...
- Unique capabilities with LHCb in the heavy flavor sector to constraint nPDF at very small (pPb collisions – charm and beauty) and large (fixed target - charm) Bjorken-x

• LHC-Fixed Target mode (Vs_{NN}~70 GeV)

- Thanks to **unique capabilities**, LHCb offers **new opportunities** in the charm sector: J/ψ , ψ' , χ_c , D^0 , $D^{+/-}$, D^* , Λ_c ... (in the 90's the NA50/SPS experiment measured only J/ψ and ψ' in PbPb @ 17 GeV)
- Proton-nucleus collisions
 - Investigate nPDF, nuclear absorption, ... at large Bjorken-x (valence region)
- Nucleus-nucleus collisions
 - Fill the gap between SPS (~20 GeV) and RHIC (200 GeV)
 - Investigate color screening mechanism (Lattice QCD prediction)
 - NA50/SPS observed anomalous J/ ψ suppression in $\sqrt{s_{NN}}$ 20 GeV PbPb collisions ; still not fully conclusive and no capability to measure χ_c and open charm (mandatory)
 - Accessing similar energy density regime at LHC-FT: operate PbAr@70 GeV ; unique opportunity to conclude on color screening.

Bjorken-x = fraction of the nucleon momentum carried by a parton

	System \ centrality	60 - 100%	40 – 50%	20 – 30%	0 - 10%
$\overline{\mathbf{\Lambda}}$	PbNe – 71 GeV	108.6	392.5	814.5	1494.9
HC	PbAr – 71 GeV	123.6	496.5	1228.3	2372.7
$\overline{\mathbf{v}}$	PbKr – 71 GeV	196.9	919.1	2205.5	4084.3
PS	PbPb – 17 GeV	124.2	605.9	1338.7	2980.5

(charged particle multiplicity, based on EPOS-LHC-v3400)

2. IN2P3 teams: A bit of history

- The Ion and Fixed Target (IFT) working group •
 - **July 2015** : proposal for LHCb participation to the Heavy Ion Runs
 - 10 people signing (5 people from IJClab+LLR: 2 perm. + 3 postdocs)
 - Since then

LHCD

- **Strong synergies IJClab/LLR**: expertise sharing / IJClab mostly on collider data (*p*Pb) / LLR mostly on fixed-target data (*p*He, *p*Ne, *p*Ar, PbNe)
- Permanent physicists : P. Robbe (CNRS/IJClab) run coordinator (2015 2017), F. Fleuret (CNRS/LLR) IFT convener (2018 2020)
- **Postdocs** (lab/main financial support): ٠
 - L. Massacrier (IJClab/P2IO)
 - F. Bossu (IJClab /ERC)
 - E. Maurice (LLR/P2IO+Polytechnique)
 - M. Winn (IJClab /ERC)
 - Y. Zhang (IJClab /ERC)
 - B. Audurier (LLR/P2IO+Polytech.+CNRS) \rightarrow now perm. @ Irfu (DPhN/LHCb)
 - M. Guittière (IJClab/P2IO)
 - O. Boente (LLR/Polytechnique)
 - K. Mattioli (LLR/ANR)
- Thesis •
 - Elisabeth Niel (IJClab)
 - Felipe Garcia (LLR)
- Nowadays _
 - Around 40 people working in IFT (6 people from IJClab+LLR: 3 perm. + 3 postdocs)

- \rightarrow now perm. @ IJClab (CNRS/ALICE)
- \rightarrow now perm. @ Irfu (DPhN/Jlab)
- \rightarrow now perm. @ LLR (Polytechnique/LHCb)
- \rightarrow now perm. @ Irfu (DPhN/Alice)
- \rightarrow now perm. @ Tsinghua (LHCb)

 \rightarrow now postdoc @ EPFL (LHCb)

 \rightarrow now in private company

patrick.robbe@ijclab.in2p3.fr & frederic.fleuret@llr.in2p3.fr

LHCb-INT-2015-019

July 29, 2015 version 0.5

- IFT convener (2016 2018)
- lumi convener for SMOG (2017 2019)
- IFT convener (2018 2019)
- IFT convener (2019 2021)
- IFT convener (2019 2021)

2. IN2P3 teams: Data taking for Heavy Ion physics

patrick.robbe@ijclab.in2p3.fr & frederic.fleuret@llr.in2p3.fr

2. IN2P3 teams: Summary of IFT published analysis

N°) Title	Journal (citation) – Submit. – authors (ana note)		IN2P3 tear
1) <u>J/ ψ and D⁰ production in PbNe collisions</u>	<u>arXiv:2211.11652</u> /EPJC (0) – Nov 2022 F. <u>Garcia</u> , E. <u>Maurice</u> , F. <mark>Fleuret</mark> , B. <u>Audurier</u>	Targ.	(Mostly he
2) Charmonium production in pNe collisions	arXiv:2211.11645/EPJC (0) – Nov 2022 E. <u>Maurice</u> , F. <u>Fleuret</u> , F. <u>Garcia</u> , B. <u>Audurier</u>	Targ.	N°) Title
3) Open charm asymmetry in pNe collisions	arXiv:2211.11633/EPJC (0) – Nov 2022 E. <u>Maurice</u> , F. <u>Fleuret</u> , F. <u>Garcia</u> , B. <u>Audurier</u>	Targ.	16) <u>Enhanced double parton scattering in</u> proton-lead collisions at 8.16 TeV
4) <u>∧⁺c to D⁰ ratio in peripheral PbPb collisions</u>	arXiv:2210.06939/JHEP (1) – Oct 2022 B. <u>Audurier</u> , S. Chen, F. <u>Garcia</u> , G. Manca	Coll.	17) <u>Measurement of B⁺, B⁰ and A⁰_b production</u> in <u>pPb collisions at 8.16 TeV</u>
5) <u>coherent charmonium production in ultra-</u> peripheral lead-lead collisions	arXiv:2206.08221/JHEP (5) – Jun. 2022 B. <u>Audurier</u> , A. Bursche, V. Dobishuk, W. Duan, H. Li, Q. Lu, G. Manca, M. Rangel, B. Schmidt, X. Wang, Y. Zhang	Coll.	18) <u>1st Measurement of Charm Production in</u> its Fixed-Target Configuration at the LHC
6) <u>Z boson production cross-section in proton-</u> lead collisions 8.16TeV	<u>arXiv:2205.10213</u> /JHEP (2) – May 2022 H. Li, T. Li, G. Liu, R. Ma, J. Sun, S. Xian, Z. Yang, Q. Zhu, L. Zhang, Y. Zhang, X. Zhu	Coll.	 19) <u>Y production in <i>p</i>Pb collisions at 8.16 TeV</u> 20) <u>Prompt Λ⁺_c production in <i>p</i>Pb collisions at</u> 5.02 TeV
7) <u>antiproton production from antihyperon</u> decays in pHe collisions	<u>arXiv:2205.09009</u> /EPJC (1) – May 2022 L. Anderlini, A. Bizzeti, F. Davolio, G. Graziani, S. Mariani, V. Zhukov	Targ.	21) Measurement of antiproton production in plus collicions at 110 Col/
8) prompt <i>D</i> ⁰ nuclear modification factor in <i>p</i> Pb collisions at 8.16 TeV	<u>arXiv:2205.03936</u> /PRL (0) – May 2022 S. Chen, Y. Gao, C. Gu, G. Manca, Y. Luo, B. Schmidt, J. Sun, J. Wang, D. Yang, Z. Yang, Y. Zhang, X. Zhu	Coll.	22) <u>Study of prompt D⁰ meson production in</u> pPb collisions at 5 TeV
9) <u>modification of <i>b</i> quark hadronization in high-</u> multiplicity <i>pp</i> collisions at <u>13 TeV</u>	arXiv:2204.13042/PRL (4) – Apr. 2022 J. Durham, C. Dean, E. Epple, K. Smith, C. DaSilva, C. Wong	Coll.	23) Prompt and nonprompt J/ ψ production in
10) R_{pA} of neutral pions in the forward and backward regions in pPb collisions	arXiv:2204.10608/PRL (1) – Apr. 2022 T. Boettcher, P. Ilten, M. Williams	Coll.	24) $\psi(2S)$ production in pPb collisions at 5 TeV
11) <u>RpA of Prompt Charged Particle in <i>p–Pb</i> and pp Collisions at 5 TeV</u>	P <u>RL 128 (2022) 142004</u> (8) – Aug. 2021 O. Boente, A. Gallas, C. Santamarina, R. Vazquez	Coll.	25) Long-range near-side angular correlations in STeV proton-lead collisions
12) <u>J/w photoproduction in Pb-Pb peripheral</u> collisions at 5 TeV	<u>PRC105 (2022) L032201</u> (11) – Aug. 2021 S. Belin, B. <u>Audurier</u> , G. Manca, F. <u>Garcia</u>	Coll.	26) <u>Z production in pPb collisions at LHCb</u>
13) <u>Study of coherent J/ψ production in lead-lead</u> collisions at 5 TeV	arXiv:2107.03223/JHEP (14) – Jul. 2021 B. Audurier, A. Bursche, V. Dobishuk, P. Gandini, D. Johnson, H. Li, G. Manca, V. Pugatch, L. Rangel, B. Schmidt, L. Silva, R. Kopecna, Q. Lu	Coll.	27) <u>Y production in pPb collisions at 5TeV</u>
14) prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in pPb collisions at 8.16 TeV	<u>PRC103 (2021) 064905</u> (5) – Mar. 2021 J. Crkovska, C. DaSilva, M. Durham	Coll.	28) J/ψ production in pPb collisions at 5 TeV
15) multiplicity-dependent prompt $\chi c1(3872)$ and $\psi(2S)$ production in pp collisions	<u>PRL 126 (2021) 092001 (</u> 30) – Sept. 2020 M. Durham, J. Crkovska, C. Dean, E. Epple, G. Kunde, C. DaSilva	Coll.	29) centrality determination in PbPb and PbNe

IN2P3 teams contributed to this analysis (Mostly heavy flavour production studies)

Targ.	N°) Title	Journal (citation) – Submit. – authors (ana note)	Coll
Targ.	16) <u>Enhanced double parton scattering in</u> proton-lead collisions at 8.16 TeV	PRL 125 (2020) 212001 (13) – Jul. 2020 Y. Gao, P. <u>Robbe</u> , B. Schmidt, M. <u>Winn</u> , A. Xu, Y. Zhang	Coll.
Coll.	17) <u>Measurement of B⁺, B⁰ and Λ⁰₆ production</u> in pPb collisions at 8.16 TeV	Phys. Rev. D99 052011 (2019) (42) – Feb. 2019 V. <u>Balagura</u> , F. <u>Fleuret</u> , E. <u>Maurice</u> , P. <u>Robbe</u> , M. <u>Winn</u> , Y. <u>Zhang</u> , B. Schmidt	Coll.
Coll.	18) <u>1st Measurement of Charm Production in</u> <u>its Fixed-Target Configuration at the LHC</u>	PRL 122 (2019) 132002 (74) – Oct. 2018 E. <u>Maurice</u> , F. <mark>Fleuret</mark> , P. <u>Robbe</u> , M. <u>Winn; Y. Zhang</u>	Targ.
	19) <u>Y production in <i>p</i>Pb collisions at 8.16 TeV</u>	<u>JHEP 11 (2018) 194</u> (54) – Oct. 2018 S. Chen, G. Manca	Coll.
Coll.	20) Prompt Λ_{c}^{+} production in pPb collisions at 5.02 TeV	JHEP 02 (2019) 102 (51) – Sept. 2018 Y. Gao, B. Schmidt, J. Sun, D. Yang, Z. Yang, Y. Zhang, X. Zhu	Coll.
Targ.	21) <u>Measurement of antiproton production in</u> <u>pHe collisions at 110 GeV</u>	PRL 121 (2018) 222001 (72) – Aug. 2018 L. Anderlini, G. Graziani, C. Lucarelli, S. Mariani, G. Passaleva, M. Ferro Luzzi, T. Verlage, V. Zhukov	Targ.
Coll.	22) <u>Study of prompt D⁰ meson production in</u> <u>pPb collisions at 5 TeV</u>	<u>JHEP 10 (2017) 090</u> (116) – Jul. 2017 E. <u>Maurice</u> , F. <u>Bossu</u> , F. <u>Fleuret</u> , Y. Gao, G. Manca, P. <u>Robbe</u> , M. <u>Winn</u> , Z. Yang, Y. Zhang, L. <u>Massacrier</u>	Coll.
Coll.	23) <u>Prompt and nonprompt J/ψ production in <u>pPb collisions at 8.16 TeV</u></u>	<u>Phys. Lett. B774 (2017) 159</u> (92) – Jun. 2017 V. <u>Balagura</u> , F. <u>Bossu</u> , F. <u>Fleuret</u> , E. <u>Maurice</u> , P. <u>Robbe</u> , M. <u>Winn</u> , Y. <u>Zhang</u>	Coll.
Coll.	24) <u>$\psi(2S)$ production in pPb collisions at 5 TeV</u>	JHEP 03 (2016) 133 (66) – Jan. 2016 Y. Gao, F. Jing, Y. Zhang, M. Zhao, M. Schmelling, B. Schmidt	Coll.
Coll.	25) Long-range near-side angular correlations in 5TeV proton-lead collisions	<u>Phys. Lett. B762 (2016) 473</u> (109) – Dec. 2015 M. Meissner	Coll.
Coll.	26) <u>Z production in pPb collisions at LHCb</u>	<u>JHEP 09 (2014) 030</u> (72) – Jun. 2014 C. Elsasser, K. Müller	Coll.
Coll.	27) <u>Y production in pPb collisions at 5TeV</u>	JHEP 07 (2014) 094 (95) – May 2014 Y. Gao, J. He, F. Jing, Y. Li, M. Schmelling, B. Schmidt, Z. Yang, X. Yuan, L. Zhong	Coll.
Coll.	28) <u>J/ψ production in <i>p</i>Pb collisions at 5 TeV</u>	<u>JHEP 02 (2014) 72</u> (199) – Aug. 2013 Y. Gao, J. He, F. Jing, Y. Li, B. Liu, M. Schmelling, B. Schmidt, Z. Yang, X. Yuan, L. Zhong	Coll.
0.11		JJINST 17 (2022) P05009	

F. Garcia, B. Audurier, E. Maurice, F. Fleuret

03/02/2023

All

2. IN2P3 teams: Some Flagship results

Proton-Pb collisions at 5 TeV and 8.16 TeV ٠

 J/ψ in agreement with expectations from nPDF

Fixed-target collisions ٠

No evidence of anomalous J/w suppression in PbNe collisions (expected)

Hint of $D^0 - \overline{D^0}$ production asymmetry in Bjorken-x valence region

 10^{-2} 10^{-1}

LHCb

5.0

2.5

3. Perspectives: LHCb detector limitation observed in LHC Run I and Run II

- Limitation of LHCb detector at LHC Run 1 and Run 2 •
 - LHCb centrality reach
 - Detector limitation due to high occupancy in PbPb collisions
 - No saturation of the calorimeter
 - But. saturation of the Vertex Locator (VELO)
 - LHCb current limitations
 - Current tracking algorithm efficient up to 50% most central collisions
 - Physics studies limited to 50% less central PbPb events
- Perf. With SMOG (Fixed-target) ٠
 - No saturation up to PbNe
 - But saturation expected in PbAr

350 400

(N

3. Perspectives: LHCb upgrade – phase I

New electronics for muon and calorimeter systems

- Read out the full detector at 40 MHz.
- Replace the entire tracking system.
- Benefit for heavy ion physics
 - Collider mode
 - Up to 30% most central PbPb collisions
 - Fixed-target mode: SMOG2
 - New system to inject gas: up to \times 100 lumi
 - Possibility to inject non noble gases (H², D², O²)
 - Full centrality range for PbAr collisions
 - Limitation in centrality reach due to SciFi Tracker

LHCb at Run 3 (2022): Upgrade I

- Inst. *pp* lumi = 2.10^{33} cm⁻²s⁻¹ \rightarrow <N_{pp}> / BX ~ 5
- PbPb: should run ok up to ~30-40% centrality

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
Fixed Target ok	0-5%	1940	5820	366	73	9
up to $PbAr(A=40)$	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
PbPb limit	30-40%	512	1536	97	19	2

LHCb at Run 3 (2022): Upgrade I

- Inst. *pp* lumi = 2.10³³ cm⁻²s⁻¹ → <N_{pp}> / BX ~ 5
- PbPb: should run ok up to ~30-40% centrality ٠

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
Fixed Target ok	0-5%	1940	5820	366	73	9
n to PhAr (A=40)	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
PbPb limit	30-40%	512	1536	97	19	2

iPMs and Front-end electronics

(b) front view

SciFi

IT

LHCb at Run 4 (2029): Upgrade Ib

- Inst. *pp* lumi = **4.10³³ cm⁻²s⁻¹** → <N_{pp}> / BX ~ 10 ٠
- PbPb: should run ok up to ~10-20% centrality (thanks to IT)

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
<u>84)</u>	0-5%	1940	5820	366	73	9
	0-10%	1777	5331	335	67	8
b limit	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
	30-40%	512	1536	97	19	2

Fixed Target ok up to PbKr (A=

PbP

Layout of one of three stations for the LHCb SciFi Tracker

(a) side view

Layout of one of three stations for the LHCb SciFi Tracker.

IT = (silicon pixel) Inner Tracker (replace small central part of SciFi)

03/02/2023

M4 M5

ECAL

LHCb at Run 3 (2022): Upgrade I

- Inst. *pp* lumi = 2.10^{33} cm⁻²s⁻¹ \rightarrow <N_{np}> / BX ~ 5
- PbPb: should run ok up to ~30-40% centrality

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
et ok	0-5%	1940	5820	366	73	9
$(\Delta = 40)$	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
PbPb limit	30-40%	512	1536	97	19	2

Fixed Target up to PbAr

	20-30%	786	
Pb limit	30-40%	512	

Layout of one of three stations for the LHCb SciFi Tracket

LHCb at Run 4 (2029): Upgrade Ib

- Inst. pp lumi = 4.10^{33} cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 10
- PbPb: should run ok up to ~10-20% centrality (thanks to IT)

Coll.

366

335

223

148

97

Fixed	Targe	<u>t ok</u>
up to	PbKr	(A=84)

Centrality $<dNch/d\eta>(\Delta\eta=1) <dNch/d\eta>*3$ 0-5% 1940 5820 0-10% 1777 5331 PbPb limit 10-20% 1180 3540

786

512

20-30%

30-40%

IT = (silicon pixel) Inner Tracker (replace **small central part** of SciFi)

LHCb at Run 5 (2035): Upgrade II

Inst. pp lumi = $1.5.10^{34}$ cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 40

2358

1536

PbPb: should run ok up to ~0-5% centrality (thanks to IT+MT) ٠

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
PbPb limit	0-5%	1940	5820	366	73	9
Fixed Terret ek	0-10%	1777	5331	335	67	8
Fixed larget ok	10-20%	1180	3540	223	45	6
<u>up to PbXe (A=131)</u>	20-30%	786	2358	148	30	4
	30-40%	512	1536	97	19	2

MT = (silicon pixel) Middle Tracker (replace large central part of SciFi)

With Mighty Tracker (IT+MT) Tracking stations can cope with PbPb high multiplicity and fixed-target up to PbXe

Eq. pp@13TeV Eq. <pp@13TeV> / Eq. <pp@13TeV> /

73

67

45

30

19

9

8

6

4

patrick.robbe@ijclab.in2p3.fr & frederic.fleuret@llr.in2p3.fr

LHCb at Run 3 (2022): Upgrade I

- Inst. *pp* lumi = 2.10^{33} cm⁻²s⁻¹ \rightarrow <N_{np}> / BX ~ 5
- PbPb: should run ok up to ~30-40% centrality

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
Fixed Target ok	0-5%	1940	5820	366	73	9
up to $PbAr(A=40)$	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
PbPb limit	30-40%	512	1536	97	19	2

SciFi

IT

Upstream Tracker (UT) Located **upstream** of the magnet Needed for ghost (fake) tracks reduction and tracking efficiency improvement

Current UT must be replaced for LHC Run 5

Very high granularity needed especially for PbPb collisions

Up to 50 hits/cm² in central PbPb

Best (only) candidate: silicon pixel detector

Strong interest to contribute from France & China

LHCb at Run 4 (2029): Upgrade Ib

Centrality $<dNch/d\eta>(\Delta\eta=1) <dNch/d\eta>*3$

1940

1777

1180

786

512

- Inst. pp lumi = 4.10^{33} cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 10
- PbPb: should run ok up to ~10-20% centrality (thanks to IT)

5820

5331

3540

2358

1536

Coll.

366

335

223

148

97

Eq. pp@13TeV Eq. <pp@13TeV> / Eq. <pp@13TeV> /

73

67

45

30

19

9

8

6

4

Fixed	Target	<u>t ok</u>
<u>up to</u>	PbKr ((A=84)

PbPb limit 10-20%

0-5%

0-10%

20-30%

30-40%

LHCb at Run 5 (2035): Upgrade II

- Inst. pp lumi = $1.5.10^{34}$ cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 40
- PbPb: should run ok up to ~0-5% centrality (thanks to IT+MT)

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
PbPb limit	0-5%	1940	5820	366	73	9
<u>Fixed Target ok</u> up to PbXe (A=131)	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
	30-40%	512	1536	97	19	2

With Mighty Tracker (IT+MT) Tracking stations can cope with PbPb high multiplicity and fixed-target up to PbXe

(b) front view

patrick.robbe@ijclab.in2p3.fr & frederic.fleuret@llr.in2p3.fr

(a) side view

Layout of one of three stations for the LHCb SciFi Tracke

LHCb at Run 3 (2022): Upgrade I

- Inst. *pp* lumi = 2.10^{33} cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 5
- PbPb: should run ok up to ~30-40% centrality

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
Fixed Target ok	0-5%	1940	5820	366	73	9
up to PbAr (A=40)	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
PbPb limit	30-40%	512	1536	97	19	2

Electromag. Calo. (Ecal) Upgrade needed to Improve performances for high pile-up Reorganize ECAL zones for better handling of occupancy shapes

Full ECAL

Five areas of different cell areas:

1.5x1.5 cm², 3x3 cm², 4x4 cm², 6x6 cm², 12x12 cm²

Add longitudinal segmentation at maximum of shower development for electron/hadron separation Total of 30208 channels compared to 6000 now Improved granularity for Heavy Ion program

Strong interest to contribute from France, Spain, CERN, Italy, US, China, Australia, Hungary

LHCb at Run 4 (2029): Upgrade Ib

Inst. pp lumi = 4.10^{33} cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 10

Centrality $<dNch/d\eta>(\Delta\eta=1) <dNch/d\eta>*3$

1940

1777

1180

786

512

PbPb: should run ok up to ~10-20% centrality (thanks to IT)

5820

5331

3540

2358

1536

Coll.

366

335

223

148

97

Eq. pp@13TeV Eq. <pp@13TeV> / Eq. <pp@13TeV> ,

73

67

45

30

19

9

8

6

4

Fixed Targe	<u>t ok</u>
up to PbKr	(A=84)

PbPb limit

0-5%

0-10%

10-20%

20-30%

30-40%

LHCb at Run 5 (2035): Upgrade II

- Inst. pp lumi = $1.5.10^{34}$ cm⁻²s⁻¹ \rightarrow <N_{nn}> / BX ~ 40
- PbPb: should run ok up to ~0-5% centrality (thanks to IT+MT)

	Centrality	<dnch dη=""> (Δη=1)</dnch>	<dnch dη=""> * 3</dnch>	Eq. pp@13TeV Coll.	Eq. <pp@13tev> / 5</pp@13tev>	Eq. <pp@13tev> / 40</pp@13tev>
PbPb limit	0-5%	1940	5820	366	73	9
<u>Fixed Target ok</u> up to PbXe (A=131)	0-10%	1777	5331	335	67	8
	10-20%	1180	3540	223	45	6
	20-30%	786	2358	148	30	4
	30-40%	512	1536	97	19	2

With Mighty Tracker (IT+MT) Tracking stations can cope with PbPb high multiplicity and fixed-target up to PbXe

(b) front view

SciFi

IT

(a) side view

Layout of one of three stations for the LHCb SciFi Track

- LHC Run 1 (2009 2012) and Run 2 (2015 2018): pp, pPb, PbPb at TeV scale ($\sqrt{s_{NN}}$ x 20 larger than RHIC energies)
 - Main physics outcome
 - QGP : confirmed and refined the picture of a **nearly-perfect fluid (sQGP)** first observed at RHIC/BNL
 - Stricking new results : collective-like effects observed also in high-multiplicity pp and pPb collisions (smooth transition from small to big systems)
 → now major focus of "heavy-ion" physics
 - **LHCb collider** mode provided many new results in *p*Pb thanks to great performances of the LHCb detector
 - **LHCb Fixed Target** mode demonstrated the feasibility of the program in proton-nucleus and PbNe collisions
- LHC RUN 3 (2022 2025) and Run 4 (2026 2029): high luminosity *pp*, *p*Pb, PbPb, and (maybe) *p*O and/or OO
 - High luminosity (goal: 10 x more lumi than Run 1 and Run 2 in *p*Pb and PbPb): towards accurate quantitative description
 - LHCb collider mode can reach more central PbPb collisions (up to 30% most central)
 - LHCb Fixed Target mode (SMOG2) : High-lumi measurements in pA, up to PbAr (and maybe PbKr after Upgrade Ib)
- LHC RUN 5+ (2035 2038)+...: lighter systems (O, Ar, Xe,...) and PbPb
 - Characterize collective like-effects and physics continuum from *pp* to PbPb
 - LHCb collider mode can reach full central PbPb; very well placed to explore collective-like effects from small to large systems
 - LHCb Fixed Target mode : no limitation in PbA and very large versatility in colliding systems
 - Contribution to LHCb upgrade II envisioned: Upstream Tracker II, Electromagnetic Calorimeter, key detectors for heavy ion physics
- IN2P3 teams (IJClab, LLR) involved in LHCb heavy-ion since the beginning
 - Now joined by CEA/Saclay (technical associate)
 - Other (currently ALICE) IN2P3 teams interested in joining (LPC, Subatech)