

ALICE From RUN 2 to RUN 3 and beyond

Sarah Porteboeuf Houssais for ALICE-France

Conseil Scientifique IN2P3 – 06/02/2023

Outline

- > Why to study the Quark-Gluon Plasma ?
- ➤ What we learned from RUN 2 ?
- \succ What are the plans for RUN 3 ?
- > What was done to prepare for RUN 3 challenges ?
- ➤ What are the plans for RUN 4 ?

> What we expect from the ALICE-France community at the horizon of RUN 4 ?

Outline

- ➤ What we learned from RUN 2 ?
- \succ What are the plans for RUN 3 ?
- > What was done to prepare for RUN 3 challenges ?
- ➤ What are the plans for RUN 4 ?
- > What we expect from the ALICE-France community at the horizon of RUN 4 ?

ALICE

Outline

- > Why to study the Quark-Gluon Plasma ?
- ➤ What we learned from RUN 2 ?
- ➤ What are the plans for RUN 3 ?
- > What was done to prepare for RUN 3 challenges ?
- ➤ What are the plans for RUN 4 ?

Presented by Francois Presented at Conseil Scientifique IN2P3 27th Oct. 2022 Projet de participation à une jouvence de l'expérience ALICE

> What we expect from the ALICE-France community at the horizon of RUN 4 ?

Collective behavior with charm and beauty

Also Jet azimuthal anisotropy, submitted to PRL arXiv:2110.15852 φ meson in Pb-Pb EPJC 78 (2018) 559 and pp EPJC 81 (2021) 772

····· DIPSY

10⁻³

smooh increase of

strangeness

production vs.

multiplicity,

continuity with

systems size

..... EPOS LHC

 10^{2}

 10°

 $\left< \mathrm{d}N_{\mathrm{ch}} / \mathrm{d}\eta \right>_{\left|\eta\right| < 0.5}$

Role of initial state, saturation, final stat, hadronization, fluctuations under investigation

> Also azimuthal anisotropy of jet particles in p-Pb and Pb-Pb submitted to PRL single- μ azimuthal anisotropy to be submitted to PLB J/ψ – hadron correlations in pp to be submitted to JHEP Quarkonium inclusive production submitted to EPJC arXiv:2109.15240 Jet cross section in pp PRD 100, 092004 (2019)

sarah.porteboeuf@clermont.in2p3.fr

Transport model, Pb-Pb, 20-40%, 2.5<y J/V <4, \ S_N = 5.02 TeV

5

6

 $p_{\pm}^{J/\psi}$

' (GeV/c)

Inclusive J/w Primordial .I/

RUN 3

- Better probe QGP with heavy flavor quarks
- Study hadronic collision scaling quantity from pp to Pb-Pb and onset of collectivity in hadronic collisions
 - > Improve vertexing capabilities in the central barrel allowing better reconstruction of primary and secondary vertices
 - Better rejection of background
 - > Better reconstruction of decay chain, especially at low p_{T}

Charmonia and Open heavy flavors: separation of charm and beauty

Prompt Charmonium production Prompt/non-prompt J/ ψ separation down to $p_T = 0$. $\psi(2S)$ measurement in central Pb-Pb collisions

> In the HF sector

Charm and Beauty measurement down to $p_T = 1 \text{ GeV}/c$ in the single muon channel Beauty measurement down to $p_T = 0$ in the non-prompt J/ ψ channel

Low-mass dimuons

Improved mass resolution for light resonances. Sensitivity to prompt continuum

Open possibilities for central-forward correlation of many probes

Increase statistics by a factor 10 (muons) to 50 (central barrel)

RUN 3 challenges

RUN 3 challenges

RUN 3 plan adaptation

> In 2022 major events impacting LHC operation

- LHC cryo issue, LHC stopped 4 weeks, 3 weeks of data taking lost (1 week shadowed by planned Technical Stop)
- War in Ukraine and Energy crisis in Europe : 2022 operation stopped 2 weeks earlier for energy saving

RUN 3 plan adapted

- > 2022 devoted to pp data taking
- > HI run postponed to 2023 with extended running time: 5 weeks instead of 4

RUN 3 plan adaptation

Detailed RUN 3 plan under discussion

- > 20% reduction of running time every year as a baseline
- Several scenarios under discussion

p-Pb in 2024 as initiallyplanned2 Pb-Pb period extendedto 5 weeks

3w p-Pb in 2025, after completion of the PbPb program

4w Pb-Pb in 2024 and 2025 p-Pb postpone to RUN 4 To ensure the PbPb plans

RUN 3 plan adaptation

- > Thanks to reduce set-up times and higher performances of the machine in longer run
- > ALICE integrated luminosity target remains
 - 2023 Pb-Pb: target L_{int}^{Pb-Pb}= 3.25 nb⁻¹
 - Target Pb-Pb lumi for Run 3: L_{int}^{Pb-Pb}= 6.5 nb⁻¹
 - If achieved in 2023+2024 : run p-Pb in 2025 with *L*_{int}^{p-Pb}= **150 nb**⁻¹

- Estimated performance has large uncertainties
 - Especially from machine availability and beam parameters in collision
- Depending on scenario, estimate about
 - 2.7-3.6 nb⁻¹ at ALICE
 - Goal by experiment: 3.25 nb⁻¹
 - 2.4-3.2 nb⁻¹ at ATLAS/CMS
 - Goal by experiment: 3 nb⁻¹
 - 0.3-0.5 nb⁻¹ at LHCb
 - Goal by experiment: 0.4 nb⁻¹
- The goals set by the experiments are challenging and ambitious ٠
 - Could be feasible, but also clear risk that we cannot reach the goals for some or all experiments
 - If we do not reach the 2023 goal, could compensate by doing Pb-Pb instead of p-Pb
 - If we have 4 ion runs in Run 4, it will be easier to reach the overall Run3 + Run 4 goal
- 3-5% loss in integrated luminosity at 6.37 Z TeV •

RUN 3 challenges

ALICE 2 – Upgrades for RUN 3

Time Projection Chamber (TPC) New readout chambers: from Multi Wire Proportional Chamber (MWPC) to Gas Electron Multiplier (**GEM**)

Integrated on-/off-line System Continous Readout with First Level Processors (FLPs), O2-CRU Event Processing Nodes (EPNs) for GPUbased Synchronous reconstruction

Online Data Compression Consolidation and readout upgrade of all subsystems with Common Readout Unit (CRU)

- MCH upgrade with SAMPA ASIC
- **MID** (upgrade of MTR) with FEERIC ASIC

Inner Tracking System (ITS 2) 7 cylindrical layer of MAPS (~ 10m²) Improved vertexing at high rate

ALICE 2 – Upgrades for RUN 3

Time Projection Chamber (TPC) New readout chambers: from Multi Wire Proportional Chamber (MWPC) to Gas Electron Multiplier (**GEM**)

Integrated on-/off-line System Continous Readout with First Level Processors (FLPs), O2-CRU Event Processing Nodes (EPNs) fo based Synchronous reconstruction

Online Data Compression

Muon Forward Tracker (MFT) 5 double planes of MAPS Forward vertexing for Muons

Consolidation and readout upgrade of all

subsystems with Common Readout Unit (CRU)

MCH upgrade with SAMPA ASIC

MID (upgrade of MTR) with

•

Inner Tracking System (ITS 2) 7 cylindrical layer of MAPS (~ 10m²) Improved vertexing at high rate

ALICE

MUON CHAMBER - MCH

- 5 tracking stations (2x5 Multi-Wire Proportional Chambers)
- complemented with an absorber system
- IJCLab Production of Dual **Redesign of Readout electronic** \geq sampa cards. Design and production of PCB with DualSampa cards
- **Rejuvenation of high/low voltages** []JCLab station 1 (quadrant opening and cleaning)
- Successfully Installed, cabled and integrated IJCLab station 1 Subatech station 3,4,5
- Software Subatech
 - Simulation
 - Simulation & Reconstruction
 - Calibration
- > Commissioning finalised, successful data taking at 500 kHz pp interaction rate

Dipole Magnet

Front Absorber (10_{λint})

MUON IDENTIFIER - MID

- > 72 Resistive Plate Chambers (RPCs) in 2 stations of 2 planes
- total surface ~150 m²
- 21k readout channels.
- > Upgrade of Front-End electronic with amplification (FEERIC) to prevent ageing:
 - Design
 - Production
 - Installation
 - Distribution of the thresholds via wireless systems

LPC

- > Upgrade of readout electronics, slow control, detector simulation [subatech
- > Software
 - reconstruction Subatech > QC LPC
- > Commissioning finalized, successful data taking at 500 kHz pp interaction rate

......

RunNumber

MUON FORWARD TRACKER - MFT

- > Vertex tracker for the Muon Spectrometer, installed between the interaction point and the hadron absorber (-3.6 < η < -2.5)
- 920 ALPIDE silicon pixel sensors (0.4 m²) in 280 ladders of 2 to 5 sensors each (same sensor as ITS2)

Hardware and Services

- Ladder assembly LPC
- Cooling system subatech
- Power Supply Unit Subatech
- Readout System and Firmware IP2I
- Slow Control (ALF-FRED) Subatech + IP2I
- Installation and commissioning
- > Software
 - Geometry LPC
 - Reconstruction subatech + LPC
 - > Tracking
 - MCH-MFT matching Subatech
- Commissioning finalized, successful data taking at 500 kHz pp interaction rate

sarah.porteboeuf@clermont.in2p3.fr

INNER TRACKING SYSTEM 2 – ITS2

- **Monolithic active sensors** (MAPS) called **ALPIDE**, integrating both IPHC ALPIDE Design pixel sensor and read-out electronics in a single device participation
- > 7 coaxial layers to cover $|\eta| < 1.3$ divided into 2 groups:
 - the 3 internal layers installed closest to the beam pipe IPHC Module assembly
 - ➢ 4 outer layers
- Successfully installed, cabled and integrated in May 2021. [IPHC installation + cabling]
- > Commissioning finalized, successful data taking at 500 kHz pp interaction rate
 - Online reconstruction and data compression
 - Tracking and dedicated QC
 - Performance studies with comparison to Monte Carlo
 - Alignment

ALICE 2 pp Data Taking 2022

Physics data taking at 500 kHz

- Online data compression of a factor 18
- Commissioning and validation of all components
- Preparation of Physics
- Preparation of Pb-Pb program
 - > 1 MHz (pp ref run)

ALICE 2 pp Data Taking 2022

2022 pp data under reconstruction on EPN Farm (Event Processing Node) and the Grid
 Performance study and analysis preparation ongoing

Pb-Pb 5.36 TeV

LHC22s period 18th November 2022 16:52:47.893

ALICE 2 Commissioning Pb-Pb test beam

- 2 fills at top energy 5.36 TeV
- Machine commission slip stacking and crystal cleaning
- All ALICE 15 detectors in the data taking
- Online calibrations and reconstruction (including most central events)
- 3.68 pb⁻¹ of data recorded (Compressed and Raw Time Frame)

ALICE

Input o	data rate	hresholds PHYSICS ~	F		ерм Со	mpressed Dat	a				
	Readout	StfBuilder	DPL In	DPL Out	StfSender In	StfSender Out	TfBuilder In	TfBuilder Out	DPL In	CTF writer	EOS
₽	95.6 GB/s	95.0 gB/s	93.1 gb/s	91.9 GB/s	94.0 gb/s	109 GB/s	70.9 gb/s	85.4 GB/s	93.5 GB/s	868 мв/s	90.4 GB/s

sarah.porteboeuf@clermont.in2p3.fr

CERN-LHCC-2020-009 EM and DIS measurements

ALICE 2.1 – Upgrades for RUN 4

FoCal

Q (GeV)

- FoCal-E, Si-W high granular elem. calorimeter
- FoCal-H, Cu-fibre hadronic calorimeter

Small-x complementary to LHCb and EIC

ITS 3

- B- & c-strange mesons+baryons: $B_{s,}^{0} \Lambda_{b}^{0,} \Lambda_{c}^{+,} \Xi_{c,}^{0} \Xi_{c}^{+}$
- Heavy-flavour vertexing at low p_T with prompt Λ_{C}^+ , Ds⁺, Ξ_{C}
- By reducing the material budget and getting closer to IP
 Inner-most tracking layers to be replaced by ultra-thin, wafer-scale bent MAPS

Fixed Target

- Proposal for a retractable fixed target ALICE
- Target position z ~ 4.8 m on A side
- Use of bent crystals
- Conceptual design and perf. studies
- ANR JCJC by L. Massacrier
- Continuation of integration studies by ALICE Technical Coordination not supported by ALICE MB

STAR

ALICE z_{target}=-4.7m

-4 -2

Center-of-mass

ALICE ztarget=0

Presented at Conseil Scientifique IN2P3 27/10/22 Projet de participation à une jouvence de l'expérience ALICE Alugation and a second and a se

A Large Ion Collider Experiment

ALICE 2.1 – ITS 3

Presented by A. Maire at CS IN2P3 27/10/22 Projet de participation à une jouvence de l'experience ALICE <u>https://indico.in2p3.fr/event/28308/</u>

sarah.porteboeuf@clermont.in2p3.fr

ALICE-France (IN2P3) community

- > O(100) physicists in the French QGP community
- + Engineers and technicians
- ALICE-IN2P3 permanent physicists = 34
- QGP-France annual meeting

High level of implication and recognition in the ALICE Collaboration

- > Projects : ITS2, MCH, MID, MFT, O2
- Implied at many levels of the collaboratio
 - Spokesperson office
 - Management Board
 - Physics Board
 - Technical Board
 - Conference committee
 - Run coordination
 - Scientific coordination
 - Physics Coordination
 - Physics Working Group
 - Physics Analysis Group

Level of responsibility	2021	2022
L1	4	3
L2	4	6
L3	16	15

+ Linked to the GDR QCD
+ Linked to the SFP Division Nucléaire and Division Champs et particules

26

Conclusions

- Important physics results for the comprehension of QGP physics have emerged during RUN 2 data analysis with strong leading role from the French community
- Successful upgrade conducted during LS2 in preparation for RUN 3
 - Leading role in major ALICE projects MCH, MID, MFT, ITS2
 - Upgrade in time despite worldwide situation (Covid pandemic)
- Successful installation and integration into the global ALICE data taking
- Preparation of RUN 3 physics analysis ongoing
- Engagement of the French community until end of RUN 4
 - Maintenance and operations of ITS2, MCH, MID, MFT, O2-CRU
 - Exploitation of physics data through data analysis

Preparation of LS3/LS4 and upgrades upon IN2P3 approval

Thanks to the ALICE-France community for the help in preparing the slides ! And more specifically to Antonin, Antonio, Boris, Christophe, Cvetan, Cynthia, Diego, Marie, Nicole, Philippe, Xavier

ALICE-France for RUN 3 and RUN 4

Person-power anticipated evolution

Permanent only (not including post-doc, PhD and emeritus) Including known retirements and thematic changes No permanent recruitment taken into account

1. Ensure the maintenance and operations of all projects handled by French teams

2. Exploit the full physics output

Team	eam "M&OA" (2022)		Due service work FTE/year (2022)	Main detector activities in Runs 3 <i>(+ Run 4)</i>	"M&OA" (projected end Run 3, 2026)	,	"M&OA" (projected early Run 4, 2029)		
IJClab Orsay	4 + 1	5	1.5	MCH, O²	4 + 1	5	4 + 1	5	
IPHC Strasbourg	5 + 1	6	1.5	ITS2 <i>(+ ITS3)</i>	4 + 1	5	4+1	5	
IP2I Lyon	3 + 0	3	0.75	MFT <i>(+ ITS3)</i>	2 + 0	2	2 + 0	2	
LPC Clermont	2 + 5	7	1.75	MID, MFT	2 + 5	7	1+4	5	
LPSC Grenoble	2 + 2	4	1	readout, DPG <i>(+ ITS3)</i>	2 + 2	4	2 + 1	3	
Subatech Nantes	7 + 2	9	2.75	MID, MCH, MFT	4 + 2	6	3 + 2	5	
TOTAL	23 + 11	34	9.25		18 + 11	29	16 + 9	25	

Studying the Quark-Gluon Plasma

Quark-Gluon Plasma (QGP) is a deconfined state of quarks and gluons (asymptotic freedom regime) predicted by QCD and studied in high-energy heavy-ion collisions

Historical approach for QGP studies

- > pp collisions were considered as the vacuum reference
- > p-A collisions are a control experiment to estimate cold matter effects
- > AA collisions are described by a (geometrical) Glauber model defining the number of participants and the number of binary collisions (N_{coll}) for a given impact parameter b

Characterizing the medium

R

AA = superposition of N pp

Characterizing the medium

Isolated photons extend x_{T} world coverage

and confirm *n* = 4.5 scaling:

same production mechanism

Hard and electroweak probes as reference

Significant deviations from the free-nucleon PDF predictions, up to 3.5σ . Correspond to the shadowing region of the nuclear modifications at low Bjorken-x.

Allow to understand the nuclear structure with PDF in pp and nPDF in nucleus.

Also Z0: PLB 780 (2018) 372-383 J/ photoproduction in Pb-Pb: accepted by PLB arXiv:2204.10684

The calculations using nuclear PDFs describe the yield measured in Pb–Pb collisions.

ALICE

Searching new scaling paradigm in pp and p-Pb

- Differential study of hard probe production as a function of charged particle multiplicity
- Similar behavior measured for all probes
 - Close to linear when the hard probe is measured in the forward-y and multiplicity in central-y region
 - Deviation from linearity when both are measured in central-y region

sarah.porteboeuf@clermont.in2p3.fr

ALI-PUB-526545

ITS2 and MFT : ALPIDE

- monolithic active pixel sensor chip (MAPS), called ALPIDE, integrating both pixel sensor and read-out electronics in a single device
- p-type substrate with a thin, high-resistivity epitaxial layer (see diagram) in a 180 nm CMOS process provided by Tower Semiconductor
- includes a 512 x 1024 matrix of 29.24 x 26.88 mm² pixel cells, together with analogue biasing, control, readout and interfaces

READOUT TO RECONSTRUCTION

Stable 500 KHz running was achieved with further optimisation of :

- The Common Readout Unit (CRU) FirmWare (FW) to prevent from data corruption
- The ReadOut process configuration with **better memory buffers allocation**
- The Data Distribution software and its shared Memory Management

COLLECTED 13.6 TeV DATA until end of August

Delivered integrated luminosity 9.4

Statistics collected used for asynchronous

Ongoing:

- Allocation of EPN resources for Async Reconstruction: started async pool of 20 nodes.
- Use the LHC downtime to allocate more nodes (not needed by COSMIC runs) and to automate the management

Publications

- Total de 401 publications soumises
- avec 41 publications soumises en 1 an

(49 publications soumises pour $2020\rightarrow 21$) (46 publications soumises pour $2019\rightarrow 20$) (32 publications soumises pour $2018\rightarrow 19$)

- 13 (11) renommées
- 35 (33) célèbres
- 74 (68) réputées
- "pics" corrélés avec QM, SQM et ICHEP 2022 100

(QM en avril à Cracovie, SQM en juin à Pusan et ICHEP en juillet à Bologne)

 13 sur 29 publications avec au moins un collaborateur/trice français/e dans le "Paper Committee" ou l' "Internal Review Committee" (en général restreint à 3 personnes)

The 2023 Draft LHC Schedule in Numbers

Activity	Duration [days]	Ratio [%]
Beam Commissioning & Intensity ramp-up	47	21.7
Scrubbing	2	0.9
25 ns physics (>1200 bunches)	97	44.7
Special physics runs (incl. setting-up)	7	3.2
Pb-Pb ions & p-p ref. setting-up	6	2.8
Pb-Pb ions physics & p-p ref. run	32	14.7
Technical stop	8	3.7
Technical stop recovery	2	0.9
Machine Development blocks (incl. floating MDs)	16	7.4
Total:	217	100%

R. Steerenberg | 2022 LHC Schedule Update & Draft 2023 LHC Schedule

LHC Ph. Ph. Ion run

Th

Fr Sa Su Annual

Closure

	Jan			Feb					LHC ha	and-over BE-OP	LHC, T experin	LHC, TI2. TI8 and experiments closed		
Wk	1	2	3	4	5	6	7	8	9	10	11	12	13	
Mo	2	Control 9	16	23	30	6	13	20	27	6	13	20	ž7	
Tu	Annual	Suystem admin. days												
We	Closure										ning	¥		
Th	Control					YE	тѕ				dware			
Fr	admin. days									♥ DSO test	Harc	Machine checkout		
Sa											e.			
Su														

	First Stable beams			May 1200 bunches				Jun				Jul		
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26	
Мо	3	Easter 10	17	24	1st May 1	8	¥ 15	22	Whitsun 29	5	12	19	VdM 26	
Tu					Scrubbing								e program	
We	We Re-commissioning							Mat			TS1	it Spa		
Th	Th with beam						Ascension		Rad				ad Wra	
Fr	G. Fri.			Interleaved commissioning	Interleaved commissioning			SPEA		MD 1		S HIR		
Sa	★		iı	& intensity ramp up								15		
Su														

End of run [06:00]	End o	of 2023	Run:	Monday	30 th	October
-----------------------	-------	---------	------	--------	-------------------------	---------

					Nov				Dec				
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	2	9	16	23	¥ 30	6	13	20	27	4	11	18	Xmas 25
Tu			MD 4										
We													
Th		LHC Ph. P	h lon run					YET	s				Annual Closure
Fr		Life Po-P											
Sa													
Su													

Pb-Pb TEST (USING PROTON CYCLE)

Tentative Plan (36h)

Commissioning \rightarrow 6h

- Proton cycle: 6.8 Z TeV (5.36 TeV) ③
- $\beta^* = 10 \text{ m in IP2}$ \otimes
- Slip-stacking tests at injection \rightarrow 2h
- Crystal collimation test \rightarrow 12h

Stable Beams \rightarrow 16h \rightarrow 2 fills

- ALICE Magnets +/+ polarity \rightarrow small angles
- First fill: Individual bunches
- Half-crossing angle in IP2 = -72(int) + 172(ext) = +100 ur
- Validation of new position of TCLIA collimator right of IP2 and ZDC operation
- Second fill: 50 ns slip stacked trains
- half crossing angle at IP2 = -72(int) + 128(ext) = +56 ur

Pb-Pb: ALICE OPERATION

Final set-up for Pb-Pb:

- FT0 Calibration + FDD mezzanine cards installed
- ZDC Operation and calibration as luminometer
- ALL detectors ON and in readout
- LHC Interface for lumi publication

23:58 18 Nov '22	ION PHYS	ICS : STAB	LE BEAM	S		Fill	8413	Ene	ergy=	6799	(GeV)
BEAM INFO)	L	HC LUMIN	OSITY		E	BEAM I	nstr. B	ACKGR	DUND	
50ns_24b_8_24_5_8bpi_10Particles TypePB82Int. Bunches(P2)18BDisplaced Coll.09191	Dinj_PbPbtrains PB82 HT Beam Intensity 1 2.52e+11	BRAN L2 4.20e-03 Hz/ubarn BRAN R2 5.00e-03 Hz/ubarn ALICE VISTAR STATUS				BCM-A RS2 DUMP TH % 0. BCM-A RS32 DUMP TH % 0.					
BINON-INT. U BA	PHYSICS					ALIC	E CLO(CK STAT	US		
					AUTO /	BEAM	1 (0)		Ph.Sh.	-4.970 ps	
ALICE TRIGGER R	RATES	A	LICE LUMI	NOSITY			ALIC	E BACI	KGROU	ND	
FTOORA FTOORC FTOVX	7.275 кнz 3.787 кнz 0.218 кнz 8.248 кнz	Target insta µ Instantaneo	nt. 8.70 us 5.17	e-06	Hz/ubarn % Hz/ubarn	FT0 NO FT0 NO FT0 NO	RM SIDI RM SIDI RM SUN	E A (HZ) E C (HZ) /I (HZ)		_	0.00 0.00 0.00
ZNor ZNC	8.246 кнz 2.169 кнz 1.098 кнz	Delivered Stab	le ed 🔾	0.00 Beta* Lev	nbarn⁻' ⁄eling						
BEAM INTS TRIGG	ER RATES		LUMINO	SITY		BACKGROUND					
BEAM 1 ZNC	BEAM2	l	stantaneous	(ZNC)		SIDE A	si	DE C	SUM		
8 9 9 9 9 9 9 9 9 9 9 9 9 9	23:30 23:50	80- 80 - 90 - 90 - 22:10 22:30	22:50 2:	10 23:30	23:50	070 20 30 40 50 22:10	22:30	22:50	10000000000000000000000000000000000000		0:00 2:00 4:00

👰 🛞 Detector Control System 23:57:22 Fri, 18/11/2022 ____ **ALICE Permit** Magnets Detectors Dipole Solenoid ALICE injection safe CPV on or O Beam permit positive positive Injection permit 1 6000 A 30000 A Injection permit 2 HMP MCH MFT 681 mT 452 mT Dipole beam permit Alarms LHC status TPC PHS TOF TRD STABLE BEAMS READY DSS CSAM Ok Ok SS no handshake active

A Large Ion Collider Experiment

En prévision du LS3: FoCal-E ALICE LOI LHCC-1-036 CERN-LHCC-2020-009

Calorimètre EM en région avan avec lecture Si-W de haute granularité

 Dédié à la mesure de photons directs en région avant

ASIC 1, ch 29

40

MIP position : 26.93 ± 0.05 MIP width : 2.56 ± 0.06

60

80

100 ADC

Démonstrateur FoCal-E PAD

- Construction d'un prototype (1/5 du module final) en collaboration avec le C4Pi
- Tests sous faisceau au CERN (PS & SPS) avec readout O2 (CRU)

20

0

counts

A Large Ion Collider Experiment

En prévision du LS3: Fixed Target

- Dispositif de fonctionnement en Cible Fixe non polarisée
- Proposed layout for ALICE with bent crystal
 - → Beam splitting thanks to a bent crystal
 - → LHC collimation studies done for ALICE with proton beam, started with Pb beam
 - → Coupled to a retractable solid target in front of ALICE
- Aim at an installation in LS3 (2026-2027)
- Probe high-x gluon, antiquark and heavy-quark content in the nucleon and nucleus
- Provide inputs for astrophysics (charm and antiproton production)
- Study the nuclear matter properties in heavy-ion collisions towards large rapidity

En prévision du LS3: Fixed Target

Target design and integration

- Target position: ~5 m from IP2 with material budget outside of FoCal acceptance
- Conceptual design of the target system performed
- Mechanical integration within ALICE ongoing

Physics performance in pW at 115 GeV

- Tracking performance of the central barrel with displaced vertex for charged particles D and Λ
- PID performance ongoing

Towards a Lol (2022)

Next studies

 Vacuum and impedance integration, machine protection studies

ANR JCJC 2022 (Laure Massacrier): 2 years postdoc (performance studies), 1 IE (2 years) for vacuum studies, 1 AI (1 year) for impedance studies, material and missions

