

LHCb Upgrade II

6th February 2022, Conseil Scientifique de l'IN2P3 Chris Parkes On behalf of the LHCb Collaboration

LHCb Collaboration

- 1069 authors from 96 institutes in 21 territories
 - 1547 members
 - Expanding Collaboration
 - **341** authors signing the exp. proposal in 1998, **690** the upgrade proposal in 2012

Growth in

recent years

Includes in

areas

outside

Flavour

Physics,

notably in

Heavy ions

and fixed target

LHCD THCP

B DECAYS TO CHARMONIUM

B DECAYS TO OPEN CHARM

CHARMLESS *b*-HADRON DECAYS

b-HADRONS AND QUARKONIA

CHARM PHYSICS

FLAVOUR TAGGING

LUMINOSITY

QCD, ELECTROWEAK AND EXOTICA

RARE DECAYS

SEMILEPTONIC B decays

DETECTOR PERFORMANCE

IONS AND FIXED TARGET

LHCb Collaboration - France

- CPPM, IJCLab, LAPP, LLR,
- LPC,LPNHE, CC IN2P3
- IRFU technical associate group
- Interest from other groups

- ECAL, SciFi
- DAQ & Real Time Analysis
- Leading involvements & positions
 - Physics Coordinator,
 - Operations Coordinator
 - Project Leaders
 - Physics Group Coordinators...

4

LHCb – Flavour & beyond

Future plans build on the success of the experiment during Run 1 & 2

- > 650 physics papers (most per author of any LHC experiment)
- Series of significant discoveries
 - Rare decays
 - Matter anti-matter differences in three new systems
 - 60 of the 68 hadronic particles discovered at the LHC
- Breadth of physics programme
 - World leading experiment in core field
 - But also leading or unique far beyond
 - Heavy ions
 - Fixed Target
 - Electroweak
 - Dark Sector

Original

•Requirements:

- efficient trigger on leptons and hadron channels
 - Upgrade I&II: 40MHz software trigger
- efficient particle ID for flavour tagging and background rejection
 - RICH 1&2 for hadron identification
- good proper time resolution for time dependent measurements of Bs decays
 - •VELO: Geometry and beam proximity
- good mass reconstruction for background rejection
 UT,SciFi: High resolution tracking and geometry

Some examples of recent results

LHCD

First evidence Charm CP Violation in specific decay

- Upper end of SM prediction - separate into individual symmetries
 - Control channels to correct asymmetries
 - -3.8σ asymmetry evidence in KK

LHCb-PAPER-2022-024

ICHEP

2022

- **Direct CP Discovery 2019**
- ΔA_{CP} difference KK, $\pi\pi$
- **Cancel systematics**
 - Production, detection asymmetries

Lepton Flavour Universality

- $B \rightarrow clv$: First combined $R(D), R(D^*)$ at hadron collider
 - Much anticipated result, pathfinder result with Run 1 data
- Previous R(K)-central 3σ from SM Excellent agreement with world average, 1.9σ from standard model • All 4 results compatible with SM

LHCb

LHCb-PAPER-2022-039

- $B \rightarrow sll$: Combined R(K), R(K*) with full Run 2 & improved electron – hadron background
 - Much anticipated result

Pentaguark & Tetraguarks

 $M(D_{\rm s}^+\pi^-)$ (GeV)

 $M(D_s^+\pi^+)$ (GeV)

Upgrade I: major project

• Major project achieved on budget

Upgrade I – example key innovative technologies

VELO

SciFi

- Hybrid Pixel Detectors (55µm pitch)
- Close to the LHC beam (5.1 mm)
 - retracted/reinserted each fill
- Innovative silicon microchannel substrate
 - Bi-phase CO₂ cooling
- DAQ capable of handling 40TB/s

- Large scale tracking stations
- Scintillating Fibres
 - 250µm diameter, 2.5m long
- Signal readout by SiPMs
 - Operate at -40 C
- 12,000 km of fibre !

CERN-LHCC-2014-016 LHCb Upgrade I: Trigger Revolution CERN-LHCC-2020-006

- All sub-detectors read out at 40 MHz for a **fully software trigger**
- Factor of ~ 10 increase expected in hadronic yields at Run 3

- 30 MHz of inelastic collisions will be reduced to ~1MHz by the HLT1 (tracking/vertexing and muon ID) running on GPUs
 - 2nd set of cards in installation, total 400
- Highest throughput of any HEP experiment

Selective persistence to maximise physics for computing resources

LHCb Upgrade I Commissioning

• Reconstructed vertices with fully closed VELO

 $\times 10^3$

• Simultaneous beam-beam and fixed target collisions

• Mass peaks using novel fully software trigger (1st level in GPUs)

Upgrade I - Status & VELO incident

- Successful commissioning of Upgrade I in 2022
 - Performance of all systems demonstrated
 - Data-taking for commissioning
- Upstream Tracker
 - Currently in installation, completion March 2023
- LHC VELO vacuum safety system failed 10/1/23

- Sizeable pressure difference
 of neon between primary/secondary
 vacuum volumes
- RF foil plastic deformation
- Modules believed not damaged
- Significant effect on 2023 data-taking

Upgrade II: approval steps so far

LHCb TDR 23

Expression of Interest

LHCC-2017-003

Physics case

Accelerator study

CERN-ACC-NOTE-2018-0038

2018-08-29 Ilias.Efthymiopoulos@cern.ch

LHCb Upgrades and operation at 10" cm³ s⁴ luminosity -A first study

G. Arduini, V. Baglin, H. Burkhardt, F. Cerutti, S. Claudet, B. Di Girolamo, R. De Maria, I. Efthymiopoulos, L.S. Esposito, N. Karastathis, R. Lindner, L.E. Medina Medrano, Y. Papaphilippou, C.Parkes, D. Pellegrini, S. Redaelli, S. Roesler, F. Sanchez-Galan, P. Schwarz, E. Thomas, A. Tsinganis, D. Wollmann, G. Wilkinson CERN, Geneva, Switzerland

Keywords: LHC, HL-LHC, HiLumi LHC, LHCb, https://indico.cern.ch/event/400665

Technical Design Report

LHCC-2018-027

CERN-ACC-2018-038

LHCC-2021-012

CERN Research Board September 2019

"The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."

CERN

Approved March 2022 R&D programme, scoping document to be prepared followed by sub-system TDRs

European Strategy Update 2020 "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

Chris Parkes, LHCb Upgrade II

LHCb Upgrades

- Physics programme limited by detector, NOT by LHC
- Hence, clear case for an ambitious plan of upgrades

Upgrade II

- $\cdot L_{peak} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Lint = ~300 fb⁻¹ during Run 5 & 6, Install in LS4 (2033)
- Some smaller detector consolidation and enhancements in LS3 (2026)

Potentially the only general purpose flavour physics facility in world on this timescale

Flavour Physics at the LHC

- Sensitivity to mass scales several orders of magnitude above those within reach of direct production measurements at the energy frontier
- Numerous key observables have negligible theoretical uncertainty

LHCb will test the CKM paradigm with unprecedented accuracy

HL-LHC lies with flavour physics

Potential observations

LHCb

CP violating phase ϕ_s

- Sensitive to new physics small and well predicted in SM
- Upgrade II sensitivity below SM
 prediction in multiple channels

CP violation in charm

 LHCb Upgrade II is the only planned facility with a realistic possibility to observe particle anti-particle difference in charm mixing (at >5 or if present central values are assumed)

LHCb Heavy Ion & Fixed Target programme

- General purpose heavy-ion experiment suitable for pA and AA in forward rapidity
 - e.g. pPb low-x regime beyond reach of electron ion collider
- Particle identification key to LHCb heavy-ion programme
- Low momentum tracking capabilities
- Increased granularity gives access to higher centrality
 - Detector designed with capabilities in mind
- Key topics
 - study deconfinement at finite temperature
 - chiral symmetry restoration in the QGP phase at finite temperature and thermal radiation of the QGP
 - low-x regime of the nucleus searches for gluon saturation
 - intrinsic heavy quark distributions in the nucleon & modification of nuclear PDFs
 - Polarised gas target (beyond baseline of Upgrade II) for fixed-target would probe the study of quark and gluon Transverse Momentum Dependent PDFs s in the nucleon

Further Opportunities

Spectroscopy

- Discovery of exotic hadrons opens new field
- e.g. T_{cc}^{++} suggests there could be long-lived exotic hadrons
- Understanding binding mechanisms
- Building-up multiplets
- Six-quark final states ?

Topic	Comment	
Spectroscopy	Enormous yields in gold-plated final states	
	e.g. 4M $\Lambda_b^0 \to J \psi p K^-$ decays ('pentaquark' mode)	
Higgs	Measure Higgs-charm Yukawa within factor 2 to 3 of SM value	
$\sin^2 heta_W$	Uncertainty $< 10^{-4}$, better than LEP/SLD	
Proton structure	Precision probes at extremely low and high Bjorken-x values,	
	with $Q^2 > 10^5 \mathrm{GeV^2}$	
Hidden sector	Sensitivity to most of relevant parameter space for dark-photon models	

Status and Stages in Process

LHCb THCp

- Support from full collaboration
- Process from FTDR to installation defined with LHCC
- Scoping document within 2 years
- R&D underway leading to subdetector TDRs
 - Funding agency discussions underway One significant construction award and many R&D grants – including generic applications
- Expanding collaboration

Phase	LS2	Run 3	LS3	Run 4	LS4 Run 5 & 6
Project Approval Sta	iges FTDR		MoU		· · ·
Detectors		LS3 TDR	LS4 TDR		
Online, Trigger, Com	puting			TDR	
LS3 Infrastructure					
LS3 Detector Constru	uction		Installation		
LS4 Detector Constru	uction				Installation
VELO					Installation
UT					Installation
MT					Installation
Magnet Stations					Installation
RICH					Installation
TORCH					Installation
ECAL					Installation
Muons					Installation
Online & Trigger					Installation

Detector	Countries involved
VELO	BR, CERN, ES, FR, IT, NL, PL, RU, SE, UK
UT	CN, FR
Magnet Stations	PL, US
Mighty Tracker ($SciFi + MAPS$)	BR, CH, DE, ES, SE, UK
RICH	CERN, IT, PL, RO, SI, UK
TORCH	CERN, UK, SI
ECAL	AU, CERN, CN, ES, FR, HU, IT, RU, US
Muon	IT, RU
RTA	BR, CERN, CN, DE, ES, FR, IT, NL, PL, RU, UK, US
Online	CERN, FR

Chris Parkes, LHCb Upgrade II

Opportunities for the detector at LS3

Modest consolidations with physics benefits already in Run 4 while preparing UII

driven by ageing driven by technology driven by physics

Detector	Proposal
ciFi consolidation	Replace inner modules $(12X + 12stereo)$
IAPS modules	$2 \text{ layers}, 1 \text{ m}^2 \text{ each}$
lagnet Stations	full installation
RICH	new FEE electronics
CAL	32+144 inner modules
TA	Downstream tracking with FPGA

RICH electronics with timing

S N N

ECAL inner modules

- Consolidation & Upgrade II preparatory work
- Reused for Upgrade II
 - Costs accounted as part of Upgrade II for reused elements
- Proceed with LS3 TDRs before those for Upgrade II
 - Work already proceeding on some of these

Careful evaluation of what can be achieved on this timescale

The detector challenge & opportunity

Targeting same performance as in Run 3, but with pile-up ~40!

Same spectrometer footprint, innovative technology for detector and data processing Key ingredients: • granularity

- fast timing (few tens of ps)
- radiation hardness

4D Vertexing: Extra Dimension of Precision Timing

U-I 3D

U-II 3D

U-II 4D

100

ASIC designs in community

 n_{tracks} (has B hadron)

150

200

0.4

0.2

50

First major 28nm

- 4D tracking
- Ensures similar performance to Upgrade I
 - ~ 50ps, 50µm²

x [mm]

• Extreme lifetime fluence

$$-6 \times 10^{16} n_{eq}/cm^2$$

Chris Parkes, LHCb Upgrade II

Tracker: Rad Hard MAPs, first of kind at LHC

LHCb ГНСр

- UT before magnet
- Mighty tracker SciFi+CMOS after magnet
- Monolithic Active Pixel Sensors $(50 \times 150 \mu m^2)$
 - Radiation requirements in UT $3 \times 10^{15} n_{eq}/cm^2$
 - low-cost commercial process, low material budget
- Scintillating fibres in outer region
 - radiation-hard fibres, cryogenic cooling, micro-lens enhanced SiPMs

MightyPix1 1/4 scale chip fabricated

Magnet Stations: expanding physics potential

- Low momentum particles swept out by magnet
- Instrument walls of magnet with scintillating bars
- Obtain sub-% momentum measurement
- Significant increase of acceptance for low momentum

e.g. factor of ~2 gain in prompt D^{*+} with slow π

5D Calorimetry: Precision timing

- Goal: achieve energy resolution and reconstruction eff. ~ to Run1&2
 - pile-up, radiation up to 1MGy
- Requires: granularity, precision timing
- Different technologies in different regions
- Crystal fibres R&D for highest fluence regions
- Extensive R&D

Particle ID: $\pi/K/p - RICH \& TORCH$ with Timing

- Hadron particle identification key to LHCb unique physics capabilities
- RICH 1 & 2 geometry maintained
- Time of flight TORCH system
 - Cover wide momentum range
- In both systems precision timing is crucial for Upgrade II performance
- RICH: Time-stamping each photon with a resolution of few tens of ps
- TORCH: 10-15 ps time resolution per track
- Synergy on electronics readout

Muons

DLC sputtering machine

- Novel micro-pattern gas detectors for innermost region
- Reuse existing multi-wire proportional chambers in other region
- Additional shielding $(6\lambda_I \rightarrow 10\lambda_I)$ will be installed in front of Muon detector in place of HCAL, which will bring down the rate by a factor of ~2

Iron slabs from Opera for LHCb Upgrade II arrived at CERN

Online & Offline

LHCb Upgrade II data throughput: 200 Tb/s

Event-builder architecture

- Novel trigger system for Upgrade I
 - Fully software trigger
 - HLT1 based on GPUs
- Similar concept planned for Upgrade II
- But at 200Tb/s!
 - Further exploitation of hybrid architectures:CPU, GPU, FPGA...
- Offline computing requirements are significant
 - Upgrade I model not sustainable
 - LHCb Upgrade II in Run 5 issues similar to ATLAS & CMS Phase II of Run 4
 - Coordination with WLCG and the HEP
 Software Foundation on mitigation

LHCb Upgrade II: Summary

- LHCb France 7% of Collaboration
 - Leading involvements, major roles
- Fully exploit HL-LHC

for flavour physics & beyond

- Major project for LS4 (2033-2034)
- R&D phase
 - Innovative technologies
 - Pathfinder to future accelerator projects
- Ambitious detector, proven accelerator
 - R&D proof of technologies advancing
- First funding of construction bids has been made
- Collaboration continues to expand

Backup

LHC Schedule

Commissioning with beam Hardware commissioning/magnet training

Ions

allow installation

32