

Journée de la SFP, Division Champ & Particules LPNHE Jussieu – July 10, 2023

- > History and Basics of Cosmology
- > CMB and H₀ controversy
- > BAO and Dark Energy
- > Inflation
- > Neutrino Masses

History and Basics of Cosmology

1929 - Expanding Universe

Hubble's law: V=H₀d

Discovery by Lemaitre and Hubble
Measurement of the velocity V of galaxies with their redshift (z) $z=(\lambda-\lambda_0)/\lambda_0$

Illustration with the SMACS 0723 galaxy cluster (8.10¹³m_O R_{vir}=2.4Mpc) observed by JWST

What value of H_0 ?

0.7Mpc at z=0.39

Controversial and controverted measurement
 What about gravitation?

- \succ "Ordinary" matter \Rightarrow Deceleration
- \succ "Repulsive" matter \Rightarrow Acceleration

What about matter?

> SMACS 072 cluster looks transparent to matter

1970 - Dark Matter

Galactic rotation curves → Final proof by measuring the velocity of stars within galaxies → Work of Vera Rubin and Kent Ford in the 70'

Newton Law

$$E_{c} + E_{p} = 0$$
$$V_{rot} = \sqrt{\frac{2GM}{R}}$$

Constant rotation curve Halo of Dark Matter

1964 - CMB discovery

 > 380 000 years: Recombination: Universe becomes transparent.
 > 1964: Discovered "by chance" by Penzias and Wilson (uniform radio "noise" at 7.5 cm → 2.7 K)
 > 1989-1992: Satellite COBE

- Perfect black body with a temperature T=2.725K!
- > Extremely small anisotropies of 1/10000 degrees....

1979 - Inflation

Horizon problem

 Two photons in opposite direction cannot communicates between them.
 Temperature of CMB almost identical in all the directions.
 A simple solution: very fast inflation of the Universe (A. Guth 1979)

Inflation framework

Density energy stay almost constant

$$\frac{\dot{a}}{a} = \sqrt{8\pi G\rho/3} = H = \text{cste}$$

$$a \propto e^{Ht}$$
 with $a = 1/(1+z)$

> Typically, the Universe expanded by a factor of about e^{60} at 10^{-36} s (after GUT)

1998 - Dark energy

Content of the Universe > 2/3 of Dark Energy repulsive for gravitation > 1/3 of "classical" matter

Acceleration of Universe expansion > In 1998 revolution of cosmology with standard candles, SNIa

> SNIa were dimmer (~0.2 mag), ~10% further away than expected with Ω_m =1 (only 'ordinary' matter)

Ho controversy

What do we learn with these maps?

Planck Satellite (2009)

CMB anisotropies > Angular size of the fluctuations > Conversion : angle $\theta \rightarrow$ multipôle I = 180°/ θ

Universe content seen by Planck

>Starting from power spectrum (acoustic oscillations), we derive the content of the Universe, 380 000 years ago.

From CMB to today

From Friedmann equation, we can predict the evolution of Universe components

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{a^{2}} + \frac{\Lambda c^{2}}{3} \qquad a \propto \frac{1}{1+z}$$

> CMB provides a prediction for H_0 that can be compared to H_0 locally measured by supernovae

Dark Matter

Comparison CMB/Distance ladder

Interpretation

- > Significant discrepancy ~5 σ , so-called the "H₀ tension"
- > Underestimate of systematic uncertainties

> New models to describe cosmology, typically with evolving Dark Energy model: Early Dark Energy (z>3000)

 \Rightarrow Smaller size of the sound of horizon \Rightarrow Higher value of H₀

BAO

Baryonic Acoustic Oscillations

Acoustic propagation of an over-density:

- > Baryon and photon perturbations travel together till recombination (z~1100) with speed ~ $c/\sqrt{3}$
- Then, the radius of the baryonic overdensity is frozen at 150 Mpc.
 A special distance:
- > Galaxies form in the overdense shells about 150 Mpc in radius.
- For all z, small excess of galaxies at 150 Mpc (comoving dist.)
 Standard Ruler

2005 - Observation of BAO

A 3D measurements: > Position of acoustic peak > Transverse direction: $\Delta \theta = r_s/(1+z)/D_A(z)$ => Sensitive to angular distance $D_A(z)$ > Radial direction (along the line of sight) $\Delta z = r_s \cdot H(z)/c$ => Sensitive to Hubble parameter H(z).

SDSS: 2009-2019

BOSS (2009->2014)

- 1.2 millions of Luminous Red Galaxies (LRG)
 - 0.15<z<0.7
- > 170 000 quasars
 - z>2.1, HI absorption)

eBOSS (2014 \rightarrow 2019)

- Redshift of LRG extended to 0.8
- Emission Line Galaxies (ELG): star forming galaxies, z~0.85
- Quasars direct tracers - 0.9<z<2.2</p>

BAO with galaxies and quasars

Confirmation with BOSS in 2012

- Redshift range 0.15<z<0.7</p>
- BOSS-only 8-σ observation of BAO

Even better with eBOSS in 2020 > Redshift range 0.15<z<2.5

>Consistency of

cosmological measurements

HO controversy - Dark Energy

With BAO and Big Bang Nucleosynthesis (BBN)

- > Observation of Dark Energy (Ω_{Λ} ~0.7)
- \succ Confirmation of Planck value for H_0

Scientific Project

- > 1/3 of the sky
- > 3D survey for 0<z<4
- > International collaboration
- > 74 institutions (46 non-US)

10 spectrographs

Instrument

- > 4-m telescope at Kitt Peak (Arizona)
- > Wide FoV (~ 8 deg²)
- > Robotic positioner with 5000 fibers
- > 10 spectrographs x 3 bands (blue, visible, red-NIR) → 360-1020 nm

DESI tracers of the Matter

0.0 < z < 0.4

Status of DESI

Very efficient instrument with 5000 robotic fiber positioners and 10 spectrographs built in France

May 2021: Science Survey started!
 ~55% of the survey already covered

Science with DESI

DESI projections (Font-Ribera++ 2014b)

Improvements compared to SDSS > **BAO:** 1 order of magnitude better $\sigma(\alpha) \sim 0.1\%$

Euclid 2023-2029

Instrument

- \succ ESA Satellite launched on July 1st to L2
- ➢ 6 year program
- > 14 countries + 1100 members
- > 1.2m telescope with 0.5 deg² FoV
- Two instruments (VIS, NISP)
- > Slitless NIR spectrograph (1 blue and 3 red grisms) \rightarrow 1000-2000 nm

- > 15000 deg² survey for 0.9 < z < 1.85> 50M galaxy spectra with R~250 \succ Redshift determined with H α line > Weak lensing (WL), not covered in this talk

Euclid performances in BAO

Improvements with Euclid

- > For BAO in the 1<z<1.6 region (but the gain is cosmic variance limited)
- Higher in redshift, up to z~1.8 even z~2.0 (region not covered by DESI)
- More galaxies (>50M galaxies to compare to ~40M for DESI)
- Very efficient for other science not covered in this talk:
 - Redshift Space Distortion
 - Weak Lensing
 - Cross-correlation (RSDxWL)

Future Spectroscopic Surveys

SPEC-S5/MSE/WST in a nutshell

> Many projects with comparable sensitivity and topics by 2035

> ~10k to 20 k fiber positionners

> Diameter: 6.5 to 11m

Main goal: distant Universe with tracers for 2<z<4.5</p>

Inflation 1) CMB polarization 2) Non-gaussianities

Inflation and CMB polarization

Wave vector k

Observation of B modes

- > CMB is polarized (Thomson scattering over free electrons)
- > E modes: parallel or perpendicular to k
- > B modes: rotated by 45° with respect to k
- Prediction of inflation: in addition, production of B-mode with
- GW at angular scales of a degree or larger.
- > Amplitude of the B modes depends on the inflation models
- > Ratio r: amplitude of tensor / amplitude of scalar

Current status on r

Constraints on inflation

- > r<0.1 with Planck
- Constraint three time better with BICEP2
- > Sensitivity at the order of $\sigma_r \sim 0.01$
- > Many models still possible

> Slow roll models with $V''(\Phi)$
<0 are favored

 $> \sigma_r \sim 0.003$ expected by ~ 2028

Future CMB programs Complementary approach

Satellite Mission: LiteBird (2029)

- Project selected by JAXA
- > International collaboration
- > Low resolution ~5'
- > 15 frequencies
- ➢ 80 bolometers

Ground Mission: CMB-54 (~2030)

- High resolution ~1'
- > Only a few frequencies
- > ~500 000 bolometers
- Combine several sites (SP, Atacama)
- > Adiabatic evolution from existing programs (ACTPol, BICEP/Keck, Simons Obs...)

Forecasts on r

> LiteBIRD or CMB-S4 have both sensitivity at the order of $\sigma_r \sim 0.001$

- Winning bet if 0.003<r<0.01</p>
- In addition, LiteBIRD measures τ (see later for neutrino masses)

Inflation and non-gaussianity

Description of the primordial potential Φ

$$\Phi = \varphi + f_{NL}. (\varphi^2 - \langle \varphi^2 \rangle)$$

 $\varphi:$ a gaussian random field ${\bf f}_{\rm NL}:$ amplitude of the non-Gaussianity

33

Primordial non-gaussianities: a test of inflation

 \succ Inflation also provides an explanation for the origin of the primordial perturbations

 \succ Primordial fluctuations distributed almost Gaussian with the simplest slow-roll models $f_{\rm NL} \sim O(10^{-3})$

- > Alternative inflation models (multi-fields) predict f_{NL} > 1
- > 3D galaxy surveys with a large volume can achieve $\sigma(f_{NL})$ ~1

Ground: Forecast for f_{NV}

A picture of primordial Universe

> CMB is cosmic variance limited : $\sigma(f_{NL})$ ~5

 $> f_{NL}$: the SPEC-S5/MSE quasars alone are as good as all DESI tracers combined or CMB.

> All tracers combined: total accuracy $\sigma(f_{NL})$ ~1.8

Satellite project for f_{NL}

SPHEREX

- > NASA Medium-class mission Launch in ~2025 2 years
- > All sky survey with a small mirror (20cm) in NIR
- > Redshift expected for ~400M galaxies (low resolution in z)
- > Very aggressive sensitivity, $\sigma(f_{NL}) < 1$
- > Discriminate multi- and single-field inflation models

Neutrino masses with multi-probes

Cosmic neutrino background

At early times ($T_v \gg m_v$), neutrinos contribute as radiation

 $\rho_{\nu} \propto T_{\nu}^4$

 $\rho_{\nu} = m_{\nu}n_{\nu}$

At late times ($T_v \ll m_v$), neutrinos contribute as matter

Non-relativistic transition $\begin{aligned}
\Omega_{\nu} &= \frac{\sum m_{\nu}}{93.1eV} \\
m_{\nu} &\sim \langle p \rangle &= \frac{\int pf(p)d^{3}p}{\int f(p)d^{3}p} = 3.15 T_{\nu} \quad \text{with} \quad f(p) &= \frac{1}{e^{p/T_{\nu}} + 1}
\end{aligned}$

At recombination $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7)$: relativistic $m_v > 0.6 \text{ eV} (\Sigma m_v > 1.7)$: matter-like

Current limits on Σm_{ν}

Palanque-Delabrouille , Yèche et al. (2019)

With Planck 2018 alone: Σm_v < 0.3 eV @95%CL <p>Ly-α combined with Planck 2018 Σm_v <0.10 eV @95%CL <p>BAO combined with Planck 2018 Σm_v <0.11 eV @95%CL </p>

An answer to mass hierarchy with cosmological neutrinos

- Particles Physics: atmospheric and solar oscillations
- > No constraint on absolute masses
- > 2 possible schemes: normal vs inverted hierarchy
- > With $\sigma(\Sigma m_v)$ ~20/12 meV, we measure the mass of the neutrinos with a precision better than $3\sigma/5\sigma$

> With $\sigma(\Sigma m_v)$ ~8 meV, we may have a decision at 5σ on₄₀ mass hierarchy

DESI and Euclid forecast for Σm_v

Data	$\sigma_{\Sigma m_{\nu}}$ [eV]	$\sigma_{N_{ u,\mathrm{eff}}}$
Planck	0.56	0.19
Planck + BAO	0.087	0.18
$Gal \ (k_{\rm max} = 0.1h \mathrm{Mpc}^{-1})$	0.030	0.13
$Gal \ (k_{\rm max} = 0.2h \mathrm{Mpc}^{-1})$	0.021	0.083
Ly- α forest	0.041	0.11
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.020	0.062

$\boldsymbol{\wedge}$								
	Modified Gravity	D	ark Mat	ter	Initial Conditions	Dark Energy		
Parameter	Ÿ		m√eV		$f_{\scriptscriptstyle NL}$	w _p	Wa	FoM
Euclid Primary	0.010		0.027		5.5	0.015	0.150	430
Euclid All	0.009		0.020		2.0	0.013	0.048	1540
Euclid+Planck	0.007		0.019		2.0	0.007	0.035	4020
Current	0.200		0.580		100	0.100	1.500	~10
Improvement Factor	30		30		50	>10	>50	>300

> DESI and Euclid combined with Planck give $\sigma(m_v)$ ~20 meV

Large Synoptic Survey Telescope

Rubin/LSST in a nutshell

- > Site: Cerro Pachon in Chile.
- > 8.4 m (~6.5m) telescope with 3.5 deg. FoV
- > A 3.2-gigapixel digital camera
- > 15s exposure every 20s.
- > Six filters \rightarrow 330-1080 nm
- Infrastructure almost completed
- > Camera completed (important French participation)
- Science survey starts in 2025

Program for cosmology:

- > Supernovae
- BAO with photo-z
- Weak lensing (3x2pt analyses)

Free-streaming and lensing •

CMB-S4 and LSST forecast for Σm_{ν}

Large Synoptic Survey Telescope	

Setup	$\sigma(\Sigma m_{\nu})$	$\sigma(\Sigma m_{\nu})$	$\sigma(\Omega_k)$	$\sigma(w_0)$	$\sigma(w_a)$
	[meV]	[meV]	$[\times 10^{-3}]$		
S4	73	111	0.79	1.14	2.46
(+ DESI BAO)	29	76	0.48	0.13	0.41
LSST-clustering	69	91	3.33	0.42	1.22
LSST-shear	41	120	2.99	0.19	0.57
LSST-shear+clust	32	72	2.06	0.11	0.33
S4+LSST	23	28	0.49	0.10	0.26
		24	0.49	-	-

Setup	$\sigma(\Sigma m_{\nu})$	$\sigma(\Sigma m_{\nu})$	$\sigma(\Omega_k)$	$\sigma(w_0)$	$\sigma(w_a)$
$(+\text{CV-}\tau)$	[meV]	[meV]	$[\times 10^{-3}]$		
LSST-clustering	69	91	3.3	0.42	1.20
LSST-shear	31	117	2.82	0.18	0.55
${\rm LSST}\mbox{-}{\rm shear}\mbox{+}{\rm clust}$	24	72	1.99	0.11	0.31
S4+LSST	14	21	0.49	0.10	0.26
		15	0.49	-	-

arXiv:1803.07561, S. Mishra-Sharma et al.

- > Degeneracy with other cosmological parameters ($\Omega_k, w_0, w_a, \dots$)
- \blacktriangleright Strong degeneracy between τ and m_{ν} for CMB lensing
- > Need a measurement of τ with CMB polarization (LiteBird)
- > LSST+S4+LiteBird gives $\sigma(m_v)$ ~14 meV

MSE : Forecast for Σm_{ν}

A most precise measurement of neutrino mass

- > With CMB(S4+LiteBird), accuracy on neutrino masses $\sigma(\Sigma m_v)$ ~8 meV
- > Measure the neutrino masses and test the mass hierarchy
- > Neutrino mass hierarchy at 5σ as precise as DUNE (v beams)

French community involved in all the future cosmological projects

Dark Energy - Dark Matter -2025 With BAO (DESI, Euclid) and LSST (BAO-2D & WL)

Inflation - Neutrinos - 2028-2032

- > First constraints with 3D survey with DESI and Euclid
- > With CMB (LiteBIRD, S4) and later SPEC-S5 (or similar)

Additional Slides

Holicow - lensed quasars

Principles

Study of the time-delay for each image

Several lensed quasars
 Quasar variability makes
 time delays measurable

> Time delays: ~10 days

Holicow - lensed quasars

Principles

- > Study of the time-delay for each image
- > Several lensed guasars
- \succ Main uncertainty: quantification of the mass profile around the lensing galaxy

HO and Gravitational Waves?

Principles

- > Binary neutron star merger
- Measurement of distance with the GW

Measurement of the redshift with the optical counterpart (host galaxy)

Prospects

- > Measurement at 10% with one BNS
- > ~10 BNS merger expected by year
- In O3, since April only 2-3 BNS alerts
- Expect a few % of accuracy within a few years

Matter power spectrum

- > Analogy with sound: higher at certain frequencies
- > Real space \Rightarrow k-space (Mpc⁻¹)

> Observation of "total" power spectrum with different tracers of the matter Chabanier, et al. (2019)

Impact on matter power spectrum

