

saclay

(CMS France) Diphotons and resolution

L. Millischer (CEA Saclay)

Saclay, 02.02.2010

Higgs → GammaGamma

Difficult, background-dominated analysis

 $\begin{array}{l} \sigma_{\rm Hgg}/\sigma_{\rm QCD} \simeq 10^{-9} \\ \sigma_{\rm Hgg}/\sigma_{\rm DIPHOTON} \simeq 10^{-4} \end{array}$

(CMS MC Production at 7 TeV)

High photon energy resolution required to identify small signal peak

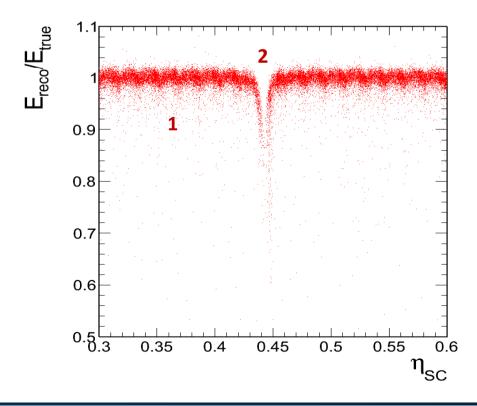
 \rightarrow Steps towards optimisation of the energy resolution

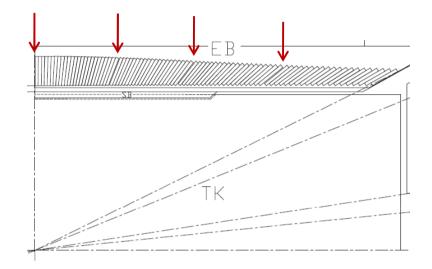
Starts as a diphoton analysis

- Two types of background (prompt diphotons, neutral mesons faking photons) to be studied
- Range of analyses to be performed (SUSY, RS, QED at high energies)

 \rightarrow Elements of a **diphoton analysis** in CMS

Resolution optimisation




Energy loss

For **unconverted** photons in the **barrel** Due to :

intermodule cracks (~7 mm)

variation of the local shower containment of a 5x5 matrix2

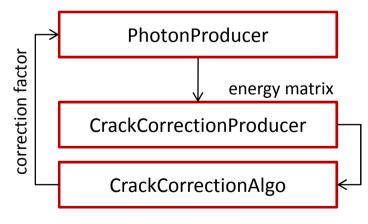
One has:

→ Energy is locally underestimated
→ Deterioration of the photon energy resolution

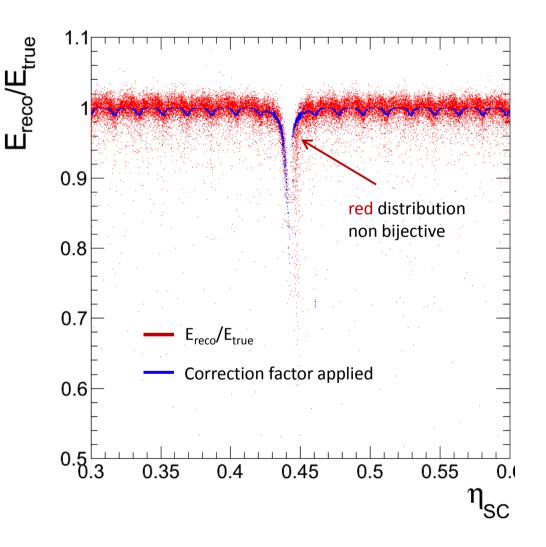
Now:

Suggesting a correction algorithm valid in the **ECAL barrel**

Resolution optimisation


Correction method

Based on CMS IN2004/007 by E. Locci


 Correction of cracks in η and φ are treaded separately

 Impact point is parametrised as function of a ratio of crystal energies
Corrected with a polynomial function fitted on test beam data and MC

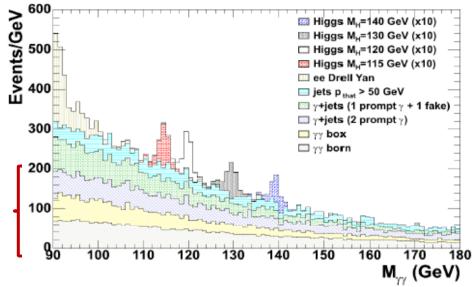
Implemented in CMSSW

NB. Difficutly correcting the right side of the crack.

Resolution optimisation

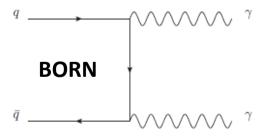
Results

Events per 0.001 Working with photons from σ_{5x5} **= 9.253e-03** /DiPhotonBox Pt10to25/Summer09- $1-\mu_{5x5} = 1.018e-03$ 5000 MC 31X V3 7TeV TrackingParticles-v1/GEN-SIM-RECO σ_{COR} = 9.131e-03 = -2.185e-03 1-μ_{COR} Pythia Box Diphotons pt hat > 254000 Resolution function before and after correction. 3000 Improvement not overwealming (low energy ~25 GeV photons, average on all 2000 unconverted photons in the barrel) Larger effect within the crack 1000 CMSSW implementation will be released soon to be tested on a larger scale 0.95 1.05 Ŏ.9 \rightarrow Final steps in collaboration with Elizabeth E_{reco}/E_{true} and the Lyon group



Analysis introduction

Performed within **Suzanne Gascon-Shotkin's** group in QCD Photons

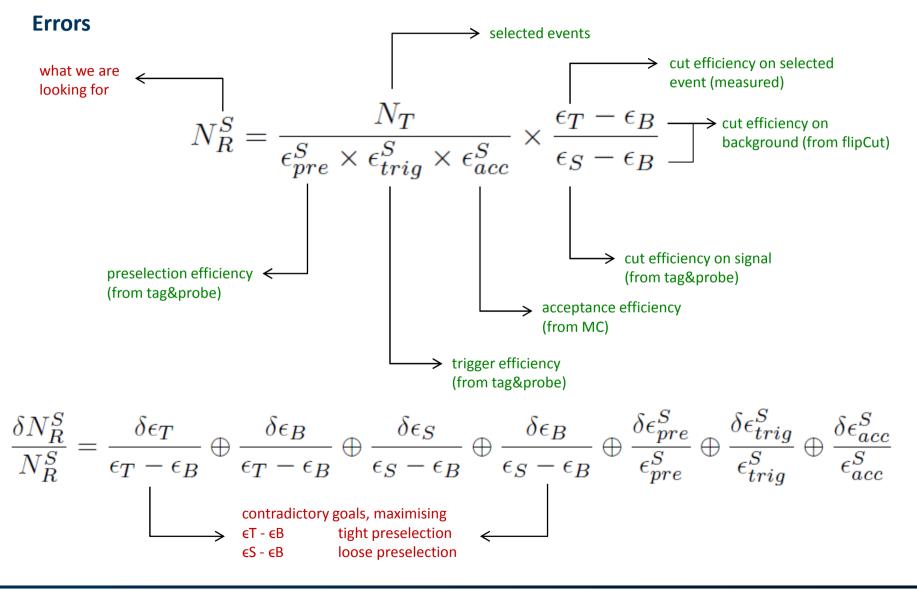

 \rightarrow Measuring the inclusive cross-section of isolated diphoton events.

In the context of the HtoGammaGamma analysis, the irreducible background.

(FRAGMENTATION)

not treated for the moment

NB.At the TevatronBORN >> BOXAt the LHCBORN ~ BOX



Workflow ANALYSIS STEPS Nature Green : know N_R^S Red : unknown Acceptance \in^{S}_{acc} $N_R^S = N_L^S x \epsilon_{trig}^{S-1} x \epsilon_{acc}^{S-1}$ Trigger ∈^Strig What is a "photon" Loose selection for us? $N_{1} = N_{1}^{S} + N_{1}^{B}$ Preselection e^S pre $N_L^S = N_T^S x \epsilon_{pre}^{S-1}$ **Tight selection** $N_{T} = N_{T}^{S} + N_{T}^{B}$ $N_T^S = N_T \frac{\epsilon_T - \epsilon_B}{\epsilon_S - \epsilon_B}$ Probing cut Are these "photons" Cut output real? $\epsilon_{T} N_{T} = \epsilon_{S} N_{T}^{S} + \epsilon_{B} N_{T}^{B}$

8

Preselection: where to place it?

What variables can we select on?

Isolation variables

ecallsolation trackIsolation hcallsolation HoverE ecalRecHitSumEtConeDR04 trkSumPtHollowConeDR04 hcalTowerSumEtConeDR04 hadronicOverEm

Showershape variables

sigmaletaleta R9 sigmaletaleta e_{3x3}/e_{SC}

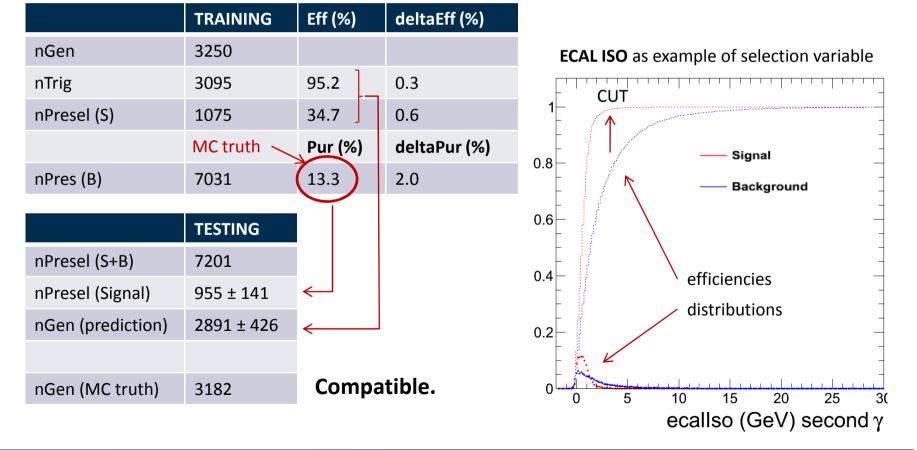
Other

angle between photon and second closest jet preshower energy (in the endcap)

 \rightarrow First photon and second photon distributions are **uncorrelated**

 \rightarrow For the probing, one need variables with **high discrimination power** and **small correlation** to the other variables

Examples of cuts ANALYSIS STEPS Nature Green : know |n|<2.5 N_RS Red : unknown $E_{+} > 20 \text{ GeV}$ Acceptance \in^{S}_{acc} $N_R^S = N_L^S x \epsilon_{trig}^{S-1} x \epsilon_{acc}^{S-1}$ such that efficiency is 1 Trigger $\epsilon^{S}_{trig} \leftarrow$ HLT doublePhoton10? Loose selection $N_{1} = N_{1}^{S} + N_{1}^{B}$ Asking for 2 photons with $E_+>20$ Preselection ϵ^{S}_{pre} trklso<2 ecallso<3 $N_L^S = N_T^S \times \epsilon_{pre}^{S-1}$ r9>.92 HoverE<0.001 **Tight selection** $N_{T} = N_{T}^{S} + N_{T}^{B}$ $N_T^S = N_T \frac{\epsilon_T - \epsilon_B}{\epsilon_S - \epsilon_B}$ Using: Probing cut < hcallso sigmaEtaEta Cut output $\epsilon_{T} N_{T} = \epsilon_{S} N_{T}^{S} + \epsilon_{B} N_{T}^{B}$


Selection

With two datasets

one for **TRAINING** (using MC truth, estimate efficiencies) and one for **TESTING** (applying est. efficiencies on S&B mixtures)

SAMPLES USED (Summer09 @ 7 TeV)

- Diphotons BOX
- Diphotons BORN
- Gamma + Jet
- QCD EM Enriched

Conclusions

Example

CDF 2005 diphoton paper With 207 pb⁻¹ at 1.96 TeV Final 427 ± 59 signal events We expect ~1000 signal events Analysis can be performed with 100 pb⁻¹

Real data

7 TeV data – run 132 440 (4 μb⁻¹) MC predictions: ~70 M in 100pb⁻¹ Events found: 0 events \rightarrow Poisson probability of 5 %

Outlook

Lot of work ahead

- Study of fragmentation photons from QCD processes
- Commissionning of the data-driven efficiency searches
- Systematic uncertainties
- Differential cross-section: eta, inv. mass, deltaPhi, cosTheta, p_T

CMS France

3 in 4 µb⁻¹

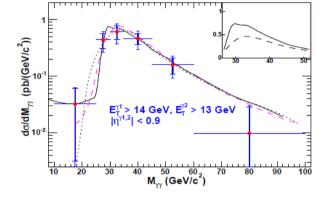


FIG. 1: The $\gamma\gamma$ mass distribution from the CDF Run II data, along with predictions from DIPHOX (solid), ResBos (dashed), and PYTHIA (dotted). The PYTHIA predictions have been scaled by a factor of 2. The inset shows, on a linear scale, the total $\gamma\gamma$ cross section in DIPHOX with (solid)/without (dashed) the qq contribution.

(Suzanne's presentation)

